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Lecture 39:

Integration of differential forms.



Vector line and surface integrals

Any vector integral along a curve γ ⊂ R
n can be

represented as a scalar line integral:
ˆ

γ

F · ds =

ˆ

γ

(F · t) ds,

where t is a unit tangent vector chosen according
to the orientation of the curve γ.

Any vector integral along a surface S ⊂ R
3 can be

represented as a scalar surface integral:
¨

S

F · dS =

¨

S

(F · n) dS ,

where n is a unit normal vector chosen according
to the orientation of the surface S .



k-forms

Let V be a vector space. Given an integer k ≥ 0, a k-form

on V is a function ω : V k → R such that

• ω is multi-linear, which means that it depends linearly on
each of its k arguments; and

• ω is anti-symmetric, which means that its value changes
the sign upon exchanging any two of the k arguments.

In particular, a 0-form is just a constant, a 1-form is merely a
linear functional on V , and a 2-form is a bi-linear function
ω : V × V → R such that ω(v, u) = −ω(u, v) for all
v, u ∈ V .

Principal example. For any vectors v1, v2, . . . , vn ∈ R
n let

ω(v1, . . . , vn) = detA, where A = (v1, . . . , vn) is an n×n

matrix whose consecutive columns are vectors v1, . . . , vn.
Then ω is an n-form on R

n (called the volume form).



Wedge product

Suppose ω1, ω2, . . . , ωk are linear functionals on a vector
space V . The wedge product of these 1-forms, denoted
ω1 ∧ ω2 ∧ · · · ∧ ωk , is a k-form on V defined by

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) =
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ω1(v1) ω1(v2) · · · ω1(vk)
ω2(v1) ω2(v2) · · · ω2(vk)

...
...

. . .
...

ωk(v1) ωk(v2) · · · ωk(vk)
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Note that dependence of the wedge product ω1 ∧ω2 ∧ · · · ∧ωk

on its factors is also multi-linear and anti-symmetric.

Now suppose V = R
n. Let ξi denote a linear functional on

R
n that evaluates the i -th coordinate for each vector. Then

the volume form from the previous slide is ξ1 ∧ ξ2 ∧ · · · ∧ ξn.
The set of all k-forms on R

n, denoted Λk(Rn)∗, is a vector
space. It has a basis comprised of wedge products
ξi1 ∧ ξi2 ∧ · · · ∧ ξik , where 1 ≤ i1 < i2 < · · · < ik ≤ n.



Differential k-forms

Let U ⊂ R
n be an open region. A differential k-form on U

is a field of k-forms from Λk(Rn)∗. Formally, its a mapping
ω : U → Λk(Rn)∗.

Example. Consider a smooth function f : U → R (which is
an example of a differential 0-form). To each point p ∈ U we
assign a linear functional v 7→ Dvf (p) (the derivative of f at
p). This defines a differential 1-form, which is denoted df .

Let x1, x2, . . . , xn be coordinates in R
n. Each xi can be

regarded a smooth function on U. Note that dxi is a constant
field: its value is ξi at every point. It follows that any
differential k-form ω on U is uniquely represented as

ω =
∑

1≤i1<i2<···<ik≤n

αi1i2...ik dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

where αi1i2...ik are some functions on U and the wedge product
is pointwise. The form ω is smooth if each αi1i2...ik is smooth.



Integration of differential forms

Any continuous differential k-form ω in a region U ⊂ R
n can

be integrated over a smooth oriented k-dimensional

manifold in U.

Definition. Let R ⊂ R
k be a connected, bounded region.

A continuous one-to-one map X : R → R
n is called a

parametrized k-dimensional manifold. The parametrized
manifold is smooth if X is smooth and, moreover, the
Jacobian matrix of X has rank k at every point of R .

If ω =
∑

1≤i1<i2<···<ik≤n

αi1i2...ik dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

then
ˆ

X

ω =
∑

ˆ

R

αi1i2...ik (X(s1, . . . , sk)) det
∂(Xi1 , . . . ,Xik )

∂(s1, . . . , sk)
dV .



Examples in R
3. • Vector line integral

The integral of a vector field F = (F1, F2, F3) along a curve γ

can be interpreted as the integral of a differential 1-form:
ˆ

γ

F · ds =

ˆ

γ

F1 dx + F2 dy + F3 dz .

• Vector surface integral

The integral of a vector field F = (F1, F2, F3) along a surface
S can be interpreted as the integral of a differential 2-form:
¨

S

F · dS =

¨

S

F1 dy ∧ dz + F2 dz ∧ dx + F3 dx ∧ dy .

• Multiple integral

The integral of a function f over a region U ⊂ R
3 can be

interpreted as the integral of a differential 3-form:
˚

U

f dV =

˚

U

f dx ∧ dy ∧ dz .



Exterior derivative

Let U ⊂ R
n be an open region. The vector space of

differential k-forms on U is denoted Ωk(U).

Theorem There exists a unique family of transformations
δk : Ωk(U) → Ωk+1(U), k = 0, 1, 2, . . . , such that
• each δk is linear,
• for any smooth function f on U, δ0(f ) = df ,
• for any smooth functions f , g1, . . . , gk on U,
δk(f dg1 ∧ · · · ∧ dgk) = df ∧ dg1 ∧ · · · ∧ dgk .

The differential form δk(ω) is called the exterior derivative

of ω and denoted dω.

Generalized Stokes’ Theorem For any smooth differential
k-form ω on U and any bounded, oriented smooth
(k + 1)-dimensional manifold C ⊂ U,

ˆ

C

dω =

˛

∂C

ω.



Examples

• Differential 1-form in R
2.

We have ω = M dx + N dy . Then

dω = d(M dx) + d(N dy ) = dM ∧ dx + dN ∧ dy

=
(

∂M
∂x

dx + ∂M
∂y

dy
)

∧ dx +
(

∂N
∂x
dx + ∂N

∂y
dy

)

∧ dy

= ∂M
∂x

dx ∧ dx + ∂M
∂y

dy ∧ dx + ∂N
∂x
dx ∧ dy + ∂N

∂y
dy ∧ dy

= ∂M
∂y

dy ∧ dx + ∂N
∂x
dx ∧ dy =

(

∂N
∂x

−
∂M
∂y

)

dx ∧ dy .

Hence in this case Generalized Stokes’ Theorem yields Green’s
Theorem:

˛

∂D

M dx + N dy =

¨

D

(

∂N

∂x
−

∂M

∂y

)

dx dy .



Examples

• Differential 1-form in R
3.

We have ω = F1 dx + F2 dy + F3 dz . Then

dω =
(

∂F3

∂y
−

∂F2

∂z

)

dy∧dz +
(

∂F1

∂z
−

∂F3

∂x

)

dz∧dx +
(

∂F2

∂x
−

∂F1

∂y

)

dx∧dy .

In this case Generalized Stokes’ Theorem yields usual Stokes’
Theorem.

• Differential 2-form in R
3.

We have ω = F1 dy ∧ dz + F2 dz ∧ dx + F3 dx ∧ dy . Then

dω =
(

∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

)

dx ∧ dy ∧ dz .

In this case Generalized Stokes’ Theorem yields Gauss’
Theorem.


