MATH 311
 Topics in Applied Mathematics I

Lecture 39:
Integration of differential forms.

Vector line and surface integrals

Any vector integral along a curve $\gamma \subset \mathbb{R}^{n}$ can be represented as a scalar line integral:

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{\gamma}(\mathbf{F} \cdot \mathbf{t}) d \mathbf{s}
$$

where \mathbf{t} is a unit tangent vector chosen according to the orientation of the curve γ.
Any vector integral along a surface $S \subset \mathbb{R}^{3}$ can be represented as a scalar surface integral:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S
$$

where \mathbf{n} is a unit normal vector chosen according to the orientation of the surface S.

k-forms

Let V be a vector space. Given an integer $k \geq 0$, a k-form on V is a function $\omega: V^{k} \rightarrow \mathbb{R}$ such that

- ω is multi-linear, which means that it depends linearly on each of its k arguments; and
- ω is anti-symmetric, which means that its value changes the sign upon exchanging any two of the k arguments.
In particular, a 0 -form is just a constant, a 1 -form is merely a linear functional on V, and a 2 -form is a bi-linear function $\omega: V \times V \rightarrow \mathbb{R}$ such that $\omega(\mathbf{v}, \mathbf{u})=-\omega(\mathbf{u}, \mathbf{v})$ for all
$\mathbf{v}, \mathbf{u} \in V$.
Principal example. For any vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ let $\omega\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\operatorname{det} A$, where $A=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is an $n \times n$ matrix whose consecutive columns are vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Then ω is an n-form on \mathbb{R}^{n} (called the volume form).

Wedge product

Suppose $\omega_{1}, \omega_{2}, \ldots, \omega_{k}$ are linear functionals on a vector space V. The wedge product of these 1 -forms, denoted $\omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k}$, is a k-form on V defined by

$$
\omega_{1} \wedge \cdots \wedge \omega_{k}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\left|\begin{array}{cccc}
\omega_{1}\left(\mathbf{v}_{1}\right) & \omega_{1}\left(\mathbf{v}_{2}\right) & \cdots & \omega_{1}\left(\mathbf{v}_{k}\right) \\
\omega_{2}\left(\mathbf{v}_{1}\right) & \omega_{2}\left(\mathbf{v}_{2}\right) & \cdots & \omega_{2}\left(\mathbf{v}_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{k}\left(\mathbf{v}_{1}\right) & \omega_{k}\left(\mathbf{v}_{2}\right) & \cdots & \omega_{k}\left(\mathbf{v}_{k}\right)
\end{array}\right|
$$

Note that dependence of the wedge product $\omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k}$ on its factors is also multi-linear and anti-symmetric.

Now suppose $V=\mathbb{R}^{n}$. Let ξ_{i} denote a linear functional on \mathbb{R}^{n} that evaluates the i-th coordinate for each vector. Then the volume form from the previous slide is $\xi_{1} \wedge \xi_{2} \wedge \cdots \wedge \xi_{n}$. The set of all k-forms on \mathbb{R}^{n}, denoted $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$, is a vector space. It has a basis comprised of wedge products $\xi_{i_{1}} \wedge \xi_{i_{2}} \wedge \cdots \wedge \xi_{i_{k}}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.

Differential k-forms

Let $U \subset \mathbb{R}^{n}$ be an open region. A differential k-form on U is a field of k-forms from $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$. Formally, its a mapping $\omega: U \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$.
Example. Consider a smooth function $f: U \rightarrow \mathbb{R}$ (which is an example of a differential 0 -form). To each point $p \in U$ we assign a linear functional $\mathbf{v} \mapsto D_{\mathbf{v}} f(p)$ (the derivative of f at $p)$. This defines a differential 1-form, which is denoted $d f$.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be coordinates in \mathbb{R}^{n}. Each x_{i} can be regarded a smooth function on U. Note that $d x_{i}$ is a constant field: its value is ξ_{i} at every point. It follows that any differential k-form ω on U is uniquely represented as

$$
\omega=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \alpha_{i_{1} i_{2} \ldots i_{k}} d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}
$$

where $\alpha_{i_{1} i_{2} \ldots i_{k}}$ are some functions on U and the wedge product is pointwise. The form ω is smooth if each $\alpha_{i_{1} i_{2} \ldots i_{k}}$ is smooth.

Integration of differential forms

Any continuous differential k-form ω in a region $U \subset \mathbb{R}^{n}$ can be integrated over a smooth oriented k-dimensional manifold in U.

Definition. Let $R \subset \mathbb{R}^{k}$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}: R \rightarrow \mathbb{R}^{n}$ is called a parametrized k-dimensional manifold. The parametrized manifold is smooth if \mathbf{X} is smooth and, moreover, the Jacobian matrix of \mathbf{X} has rank k at every point of R.

If

$$
\omega=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \alpha_{i_{1} i_{2} \ldots i_{k}} d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}},
$$

then

$$
\int_{\mathbf{X}} \omega=\sum \int_{R} \alpha_{i_{1} i_{2} \ldots i_{k}}\left(\mathbf{X}\left(s_{1}, \ldots, s_{k}\right)\right) \operatorname{det} \frac{\partial\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)}{\partial\left(s_{1}, \ldots, s_{k}\right)} d V
$$

Examples in \mathbb{R}^{3}. - Vector line integral
The integral of a vector field $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ along a curve γ can be interpreted as the integral of a differential 1-form:

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{\gamma} F_{1} d x+F_{2} d y+F_{3} d z
$$

- Vector surface integral

The integral of a vector field $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ along a surface S can be interpreted as the integral of a differential 2-form:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} F_{1} d y \wedge d z+F_{2} d z \wedge d x+F_{3} d x \wedge d y
$$

- Multiple integral

The integral of a function f over a region $U \subset \mathbb{R}^{3}$ can be interpreted as the integral of a differential 3-form:

$$
\iiint_{U} f d V=\iiint_{U} f d x \wedge d y \wedge d z
$$

Exterior derivative

Let $U \subset \mathbb{R}^{n}$ be an open region. The vector space of differential k-forms on U is denoted $\Omega^{k}(U)$.
Theorem There exists a unique family of transformations $\delta_{k}: \Omega^{k}(U) \rightarrow \Omega^{k+1}(U), k=0,1,2, \ldots$, such that

- each δ_{k} is linear,
- for any smooth function f on $U, \delta_{0}(f)=d f$,
- for any smooth functions f, g_{1}, \ldots, g_{k} on U, $\delta_{k}\left(f d g_{1} \wedge \cdots \wedge d g_{k}\right)=d f \wedge d g_{1} \wedge \cdots \wedge d g_{k}$.
The differential form $\delta_{k}(\omega)$ is called the exterior derivative of ω and denoted $d \omega$.

Generalized Stokes' Theorem For any smooth differential k-form ω on U and any bounded, oriented smooth
$(k+1)$-dimensional manifold $C \subset U$,

$$
\int_{C} d \omega=\oint_{\partial C} \omega
$$

Examples

- Differential 1-form in \mathbb{R}^{2}.

We have $\omega=M d x+N d y$. Then

$$
\begin{aligned}
d \omega & =d(M d x)+d(N d y)=d M \wedge d x+d N \wedge d y \\
& =\left(\frac{\partial M}{\partial x} d x+\frac{\partial M}{\partial y} d y\right) \wedge d x+\left(\frac{\partial N}{\partial x} d x+\frac{\partial N}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial M}{\partial x} d x \wedge d x+\frac{\partial M}{\partial y} d y \wedge d x+\frac{\partial N}{\partial x} d x \wedge d y+\frac{\partial N}{\partial y} d y \wedge d y \\
& =\frac{\partial M}{\partial y} d y \wedge d x+\frac{\partial N}{\partial x} d x \wedge d y=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x \wedge d y
\end{aligned}
$$

Hence in this case Generalized Stokes' Theorem yields Green's Theorem:

$$
\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y .
$$

Examples

- Differential 1-form in \mathbb{R}^{3}.

We have $\omega=F_{1} d x+F_{2} d y+F_{3} d z$. Then $d \omega=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) d y \wedge d z+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) d z \wedge d x+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x \wedge d y$.
In this case Generalized Stokes' Theorem yields usual Stokes' Theorem.

- Differential 2-form in \mathbb{R}^{3}.

We have $\omega=F_{1} d y \wedge d z+F_{2} d z \wedge d x+F_{3} d x \wedge d y$. Then

$$
d \omega=\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x \wedge d y \wedge d z
$$

In this case Generalized Stokes' Theorem yields Gauss' Theorem.

