MATH 311
 Topics in Applied Mathematics I
 Lecture 13:
 Review for Test 1.

Topics for Test 1

Part I: Elementary linear algebra (Leon/Colley 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix.

Elementary row operations, row echelon form and reduced row echelon form.

- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon/Colley 3.1-3.2)

- Vector spaces (coordinate vectors, matrices, polynomials, functional spaces).
- Basic properties of vector spaces.
- Subspaces of vector spaces.
- Span, spanning set.

Sample problems for Test 1

Problem 1 Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Problem 2 Let A be a square matrix such that $A^{3}=O$.
(i) Prove that the matrix A is not invertible.
(ii) Prove that the matrix $A+I$ is invertible.

Problem 3 Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Sample problems for Test 1

Problem 4 Solve an equation $\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^{2}\end{array}\right|=0$.

Problem 5 Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Problem 6 Let V denote the solution set of a system
$\left\{\begin{array}{l}x_{2}+2 x_{3}+3 x_{4}=0, \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 .\end{array}\right.$
Find a finite spanning set for this subspace of \mathbb{R}^{4}.

Problem 1. Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Let $p(x)=a+b x+c x^{2}$. Then $p(1)=a+b+c$, $p(2)=a+2 b+4 c$, and $p(3)=a+3 b+9 c$.
The coefficients a, b, and c have to be chosen so that

$$
\left\{\begin{array}{l}
a+b+c=1, \\
a+2 b+4 c=3, \\
a+3 b+9 c=7 .
\end{array}\right.
$$

We solve this system of linear equations using elementary operations:

$$
\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ a + 2 b + 4 c = 3 } \\
{ a + 3 b + 9 c = 7 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a+b+c=1 \\
b+3 c=2 \\
a+3 b+9 c=7
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ b + 3 c = 2 } \\
{ a + 3 b + 9 c = 7 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a+b+c=1 \\
b+3 c=2 \\
2 b+8 c=6
\end{array}\right.\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ b + 3 c = 2 } \\
{ b + 4 c = 3 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a+b+c=1 \\
b+3 c=2 \\
c=1
\end{array}\right.\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ b = - 1 } \\
{ c = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a=1 \\
b=-1 \\
c=1
\end{array}\right.\right.
\end{aligned}
$$

Thus the desired polynomial is $p(x)=x^{2}-x+1$.

Problem 2 Let A be a square matrix such that

 $A^{3}=0$.(i) Prove that the matrix A is not invertible.

The proof is by contradiction. Assume that A is invertible. Since any product of invertible matrices is also invertible, the matrix $A^{3}=A A A$ should be invertible as well. However $A^{3}=O$ is singular.

Problem 2 Let A be a square matrix such that $A^{3}=0$.
(ii) Prove that the matrix $A+I$ is invertible.

It is enough to show that the equation $(A+I) \mathbf{x}=\mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are column vectors) has a unique solution $\mathbf{x}=\mathbf{0}$. Indeed, $(A+I) \mathbf{x}=\mathbf{0} \Longrightarrow A \mathbf{x}+I \mathrm{x}=\mathbf{0} \Longrightarrow A \mathrm{x}=-\mathrm{x}$. Then $A^{2} \mathbf{x}=A(A \mathbf{x})=A(-\mathbf{x})=-A \mathbf{x}=-(-\mathbf{x})=\mathbf{x}$. Further, $A^{3} \mathbf{x}=A\left(A^{2} \mathbf{x}\right)=A \mathbf{x}=-\mathbf{x}$. On the other hand, $A^{3} \mathbf{x}=O \mathbf{x}=\mathbf{0}$. Hence $-\mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}=\mathbf{0}$.

Alternatively, we can use equalities
$X^{3}+Y^{3}=(X+Y)\left(X^{2}-X Y+Y^{2}\right)=\left(X^{2}-X Y+Y^{2}\right)(X+Y)$, which hold whenever matrices X and Y commute: $X Y=Y X$. In particular, they hold for $X=A$ and $Y=I$. We obtain

$$
(A+I)\left(A^{2}-A+I\right)=\left(A^{2}-A+I\right)(A+I)=A^{3}+I^{3}=I
$$

so that $(A+I)^{-1}=A^{2}-A+I$.

Problem 3. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of A from the 3rd row:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 3rd row:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right|=(-1)\left|\begin{array}{rrr}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 3rd column:

$$
(-1)\left|\begin{array}{rrr}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1
\end{array}\right|=(-1)\left(\left|\begin{array}{ll}
2 & 3 \\
2 & 0
\end{array}\right|+\left|\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right|\right)=-1
$$

Problem 3. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(ii) Find the inverse matrix A^{-1}.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Subtract 2 times the 1 st row from the 2 nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the 1st row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right)$
Subtract 2 times the 1st row from the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$

Subtract 2 times the 4th row from the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$
Subtract the 4th row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$
Add 4 times the 2 nd row to the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & 6 & 4 & 0 & -7\end{array}\right)$

Add 32 times the 3rd row to the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39\end{array}\right)$
Add 10 times the 3 rd row to the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39\end{array}\right)$
Add the 4th row to the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Add 4 times the 3 rd row to the 1 st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Subtract 2 times the 2 nd row from the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Multiply the 2 nd, the 3 rd , and the 4 th rows by -1 :

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)
$$

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)=\left(I \mid A^{-1}\right)
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-6 & -4 & -32 & 39
\end{array}\right) .
$$

Problem 3. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1 .

It follows that $\operatorname{det} I=(-1)^{3} \operatorname{det} A$.
$\Longrightarrow \operatorname{det} A=-\operatorname{det} I=-1$.

Problem 4. Solve an equation $\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^{2}\end{array}\right|=0$.
Let us evaluate the determinant using row reduction and column expansion:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & x \\
4 & 9 & x^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & x-2 \\
4 & 9 & x^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & x-2 \\
0 & 5 & x^{2}-4
\end{array}\right| \\
& \quad=\left|\begin{array}{cc}
1 & x-2 \\
5 & x^{2}-4
\end{array}\right|=x^{2}-4-5(x-2)=x^{2}-5 x+6 .
\end{aligned}
$$

Hence our equation is quadratic. The solutions are
$x_{1,2}=\frac{5 \pm \sqrt{5^{2}-4 \cdot 6}}{2}=\frac{5 \pm 1}{2}$. That is, $x_{1}=2, x_{2}=3$.

Problem 4. Solve an equation $\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^{2}\end{array}\right|=0$.
Alternative solution: It is easy to observe that $x=2$ and $x=3$ are solutions (for each of these values, the matrix has two identical columns). To show that there are no more solutions, we expand the determinant by the 3rd column:

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & x \\
4 & 9 & x^{2}
\end{array}\right|=\left|\begin{array}{cc}
2 & 3 \\
4 & 9
\end{array}\right|-x\left|\begin{array}{cc}
1 & 1 \\
4 & 9
\end{array}\right|+x^{2}\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|
$$

Since $\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|=1 \neq 0$, our equation is quadratic. Therefore it has at most two solutions.

The determinant in the last problem is an example of the Vandermonde determinant

$$
\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Problem 5. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
$(0,0,0) \in S_{1} \Longrightarrow S_{1}$ is not empty.
$x y z=0 \Longrightarrow(r x)(r y)(r z)=r^{3} x y z=0$.
That is, $\mathbf{v}=(x, y, z) \in S_{1} \Longrightarrow r \mathbf{v}=(r x, r y, r z) \in S_{1}$. Hence S_{1} is closed under scalar multiplication.
However S_{1} is not closed under addition.
Counterexample: $(1,1,0)+(0,0,1)=(1,1,1)$.

Problem 5. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
$(0,0,0) \in S_{2} \Longrightarrow S_{2}$ is not empty.
$x+y+z=0 \Longrightarrow r x+r y+r z=r(x+y+z)=0$. Hence S_{2} is closed under scalar multiplication.
$x+y+z=x^{\prime}+y^{\prime}+z^{\prime}=0 \Longrightarrow$
$\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=(x+y+z)+\left(x^{\prime}+y^{\prime}+z^{\prime}\right)=0$.
That is, $\mathbf{v}=(x, y, z), \mathbf{v}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S_{2}$

$$
\Longrightarrow \mathbf{v}+\mathbf{v}^{\prime}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in S_{2} .
$$

Hence S_{2} is closed under addition.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
$y^{2}+z^{2}=0 \Longleftrightarrow y=z=0$.
S_{3} is a nonempty set closed under addition and scalar multiplication.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.
S_{4} is a nonempty set closed under scalar multiplication. However S_{4} is not closed under addition.
Counterexample: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Problem 6 Let V denote the solution set of a system
$\left\{\begin{array}{l}x_{2}+2 x_{3}+3 x_{4}=0, \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 .\end{array}\right.$
Find a finite spanning set for this subspace of \mathbb{R}^{4}.
To find a spanning set, we need to solve the system. To this end, we subtract 2 times the 1st equation from the 2 nd one, then switch the equations:

$$
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4} \\
x_{2}=-2 x_{3}-3 x_{4}
\end{array}\right.\right.
$$

x_{3} and x_{4} are free variables. General solution:

$$
\left\{\begin{array}{l}
x_{1}=t+2 s \\
x_{2}=-2 t-3 s \\
x_{3}=t \\
x_{4}=s
\end{array}\right.
$$

$$
(t, s \in \mathbb{R})
$$

In vector form, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=t(1,-2,1,0)+s(2,-3,0,1)$. We conclude that the solution set is spanned by vectors $(1,-2,1,0)$ and ($2,-3,0,1$).

