MATH 311 Topics in Applied Mathematics I Lecture 27: Norms and inner products.

Orthogonal projection in \mathbb{R}^n

Theorem Let V be a subspace of \mathbb{R}^n . Then any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

The component **p** is called the **orthogonal projection** of the vector **x** onto the subspace V.

The projection **p** is closer to **x** than any other vector in *V*. Hence the distance from **x** to *V* is $||\mathbf{x} - \mathbf{p}|| = ||\mathbf{o}||$.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha: V \to \mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \ge 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \le \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$.

Positivity and homogeneity are obvious. Let

$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $\mathbf{y} = (y_1, \dots, y_n)$. Then
 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$.
 $|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$
 $\implies \max_j |x_j + y_j| \le \max_j |x_j| + \max_j |y_j|$
 $\implies \|\mathbf{x} + \mathbf{y}\|_{\infty} \le \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}$.

• $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|.$

Positivity and homogeneity are obvious. The triangle inequality: $|x_i + y_i| \le |x_i| + |y_i|$ $\implies \sum_j |x_j + y_j| \le \sum_j |x_j| + \sum_j |y_j|$ Examples. $V = \mathbb{R}^{n}$, $\mathbf{x} = (x_{1}, x_{2}, ..., x_{n}) \in \mathbb{R}^{n}$. • $\|\mathbf{x}\|_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{1/p}$, p > 0. Remark. $\|\mathbf{x}\|_{2}$ = Euclidean length of \mathbf{x} .

Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \ge 1$.

Positivity and homogeneity are still obvious (and hold for any p > 0). The triangle inequality for $p \ge 1$ is known as the **Minkowski inequality**:

 $(|x_1 + y_1|^p + |x_2 + y_2|^p + \dots + |x_n + y_n|^p)^{1/p} \le$ $\le (|x_1|^p + \dots + |x_n|^p)^{1/p} + (|y_1|^p + \dots + |y_n|^p)^{1/p}.$

Normed vector space

Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Then we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $dist(\mathbf{x}, \mathbf{x}_0)$ is small.

Also, we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

red

 $\|\mathbf{x}\| = \max(|x_1|, |x_2|)$

Examples.
$$V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$$

• $||f||_{\infty} = \max_{a \le x \le b} |f(x)|.$
• $||f||_1 = \int_a^b |f(x)| \, dx.$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if

 $\begin{array}{ll} (i) & \langle {\bf x}, {\bf x} \rangle \geq 0, \ \langle {\bf x}, {\bf x} \rangle = 0 \ \text{only for } {\bf x} = {\bf 0} \ \text{(positivity)} \\ (ii) & \langle {\bf x}, {\bf y} \rangle = \langle {\bf y}, {\bf x} \rangle & (\text{symmetry}) \\ (iii) & \langle r {\bf x}, {\bf y} \rangle = r \langle {\bf x}, {\bf y} \rangle & (\text{homogeneity}) \\ (iv) & \langle {\bf x} + {\bf y}, {\bf z} \rangle = \langle {\bf x}, {\bf z} \rangle + \langle {\bf y}, {\bf z} \rangle & (\text{distributive law}) \end{array}$

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$
.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$$
,
where $d_1, d_2, \dots, d_n > 0$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y}),$$

where D is an invertible $n \times n$ matrix.

Remarks. (a) Invertibility of *D* is necessary to show that $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$.

(b) The second example is a particular case of the third one when $D = \text{diag}(d_1^{1/2}, d_2^{1/2}, \dots, d_n^{1/2})$.

Problem. Find an inner product on \mathbb{R}^2 such that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = 2$, $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 3$, and $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = -1$, where $\mathbf{e}_1 = (1, 0)$, $\mathbf{e}_2 = (0, 1)$.

Let
$$\mathbf{x} = (x_1, x_2)$$
, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$.
Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$, $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$.
Using bilinearity, we obtain

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

= $x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$
= $x_1 y_1 \langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1 y_2 \langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2 y_1 \langle \mathbf{e}_2, \mathbf{e}_1 \rangle + x_2 y_2 \langle \mathbf{e}_2, \mathbf{e}_2 \rangle$
= $2x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2.$

It remains to check that $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ for $\mathbf{x} \neq \mathbf{0}$. Indeed, $\langle \mathbf{x}, \mathbf{x} \rangle = 2x_1^2 - 2x_1x_2 + 3x_2^2 = (x_1 - x_2)^2 + x_1^2 + 2x_2^2$.

Example.
$$V = \mathcal{M}_{m,n}(\mathbb{R})$$
, space of $m \times n$ matrices.
• $\langle A, B \rangle = \text{trace}(AB^T)$.
If $A = (a_{ij})$ and $B = (b_{ij})$, then $\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$.

Examples.
$$V = C[a, b]$$
.
• $\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$.
• $\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x) dx$,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b]. w is called the **weight** function.