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Lecture 32:

Area and volume.

Multiple integrals.



Area, volume, and determinants

• 2×2 determinants and plane geometry
Let P be a parallelogram in the plane R

2. Suppose that
vectors v1, v2 ∈ R

2 are represented by adjacent sides of P.
Then area(P) = |detA|, where A = (v1, v2), a matrix whose
columns are v1 and v2.

Consider a linear operator LA : R2 → R
2 given by

LA(v) = Av for any column vector v. Then
area(LA(D)) = |detA| area(D) for any bounded domain D.

• 3×3 determinants and space geometry
Let Π be a parallelepiped in space R

3. Suppose that vectors
v1, v2, v3 ∈ R

3 are represented by adjacent edges of Π. Then
volume(Π) = |detB |, where B = (v1, v2, v3), a matrix whose
columns are v1, v2, and v3.

Similarly, volume(LB(D)) = |detB | volume(D) for any
bounded domain D ⊂ R

3.



v1

v2

v3

volume(Π) = |detB |, where B = (v1, v2, v3). Note that the
parallelepiped Π is the image under LB of a unit cube whose
adjacent edges are e1, e2, e3.

The triple v1, v2, v3 obeys the right-hand rule. We say that
LB preserves orientation if it preserves the hand rule for any
basis. This is the case if and only if detB > 0.



Riemann sums in two dimensions

Consider a closed coordinate rectangle
R = [a, b]× [c, d ] ⊂ R

2.

Definition. A Riemann sum of a function f : R → R with
respect to a partition P = {D1,D2, . . . ,Dn} of R generated
by samples tj ∈ Dj is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) area(Dj).

The norm of the partition P is ‖P‖ = max1≤j≤n diam(Dj).

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
R and the limit I (f ) is called the integral of f over R .



Double integral

Closed coordinate rectangle R = [a, b]× [c , d ]

= {(x , y) ∈ R
2 | a ≤ x ≤ b, c ≤ y ≤ d}.

Notation:

∫∫

R

f dA or

∫∫

R

f (x , y) dx dy .

Theorem 1 If f is continuous on the closed
rectangle R, then f is integrable.

Theorem 2 A function f : R → R is Riemann

integrable on the rectangle R if and only if f is
bounded on R and continuous almost everywhere on
R (that is, the set of discontinuities of f has zero

area).



Fubini’s Theorem

Fubini’s Theorem allows us to reduce a multiple
integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on

R = [a, b]× [c , d ], then
∫∫

R

f dA =

∫

b

a

(

∫

d

c

f (x , y) dy
)

dx

=

∫

d

c

(

∫

b

a

f (x , y) dx
)

dy .

In particular, this implies that we can change the

order of integration in a repeated integral.



Integrals over general domains

Suppose f : D → R is a function defined on a
(Jordan) measurable set D ⊂ R

2. Since D is

bounded, it is contained in a rectangle R. To
define the integral of f over D, we extend the

function f to a function on R:

f ext(x , y) =

{

f (x , y) if (x , y) ∈ D,
0 if (x , y) /∈ D.

Definition.

∫∫

D

f dA is defined to be

∫∫

R

f ext dA.

In particular, area(D) =

∫∫

D

1 dA.



Integration as a linear operation

Theorem 1 If functions f , g are integrable on a

set D ⊂ R
2, then the sum f + g is also integrable

on D and
∫∫

D

(f + g) dA =

∫∫

D

f dA+

∫∫

D

g dA.

Theorem 2 If a function f is integrable on a set
D ⊂ R

2, then for each α ∈ R the scalar multiple
αf is also integrable on D and

∫∫

D

αf dA = α

∫∫

D

f dA.



More properties of integrals

Theorem 3 If functions f , g are integrable on a

set D ⊂ R
2, and f (x , y) ≤ g(x , y) for all

(x , y) ∈ D, then
∫∫

D

f dA ≤

∫∫

D

g dA.

Theorem 4 If a function f is integrable on sets
D1,D2 ⊂ R

2, then it is integrable on their union

D1 ∪ D2. Moreover, if the sets D1 and D2 are
disjoint up to a set of zero area, then

∫∫

D1∪D2

f dA =

∫∫

D1

f dA+

∫∫

D2

f dA.



Change of variables in a double integral

Theorem Let D ⊂ R
2 be a measurable domain

and f be an integrable function on D. If
T = (u, v) is a smooth coordinate mapping such

that T−1 is defined on D, then
∫∫

D

f (u, v) du dv

=

∫∫

T−1(D)

f
(

u(x , y), v(x , y)
)

∣

∣

∣

∣

det
∂(u, v)

∂(x , y)

∣

∣

∣

∣

dx dy .

In particular, the integral in the right-hand side is

well defined.



Problem Evaluate a double integral
∫∫

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy

over a parallelogram P with vertices (−1,−1), (1, 0), (2, 2),
and (0, 1).

Adjacent edges of the parallelogram P are represented by
vectors v1 = (1, 0)− (−1,−1) = (2, 1) and
v2 = (0, 1)− (−1,−1) = (1, 2).

Consider a transformation L of the plane R
2 given by

L

(

u

v

)

=

(

2 1
1 2

)(

u

v

)

+

(

−1
−1

)

=

(

2u + v − 1
u + 2v − 1

)

(columns of the matrix are vectors v1 and v2). By
construction, L maps the unit square [0, 1]×[0, 1] onto the
parallelogram P. The Jacobian matrix J of L is the same at

any point: J =

(

2 1
1 2

)

.



Changing coordinates in the integral from (x , y ) to (u, v ) so
that (x , y ) = L(u, v ) = (2u + v − 1, u + 2v − 1), we obtain
∫∫

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy

=

∫∫

L−1(P)

(

7u + 8v − 5− cos(4πu + 5πv − 3π)
)

|det J| du dv

=

∫ 1

0

∫ 1

0

3
(

7u + 8v − 5 + cos(4πu + 5πv )
)

du dv

=
21

2
+ 12− 15 +

∫ 1

0

∫ 1

0

3 cos(4πu + 5πv ) du dv .

Further,

∫ 1

0

3 cos(4πu + 5πv ) du =
3

4π
sin(4πu + 5πv )

∣

∣

∣

1

u=0

=
3

4π

(

sin(4π + 5πv )− sin(5πv )
)

= 0 for all v .

It follows that

∫∫

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy =
15

2
.



Triple integral

To integrate in R
3, volumes are used instead of areas in R

2.
Instead of coordinate rectangles, basic sets are coordinate
boxes (or bricks) B = [a1, b1]× [a2, b2]× [a3, b3] ⊂ R

3.
Then we can define an integral of a function f over a
measurable set D ⊂ R

3.

Notation:

∫∫∫

D

f dV or

∫∫∫

D

f (x , y , z) dx dy dz .

The properties of triple integrals are completely analogous to
those of double integrals. In particular, Fubini’s Theorem is
formulated as follows.

Theorem If a function f is integrable on a brick
B = [a1, b1]× [a2, b2]× [a3, b3] ⊂ R

3, then
∫∫∫

B

f dV =

∫ b1

a1

(
∫ b2

a2

(

∫ b3

a3

f (x , y , z) dz
)

dy

)

dx .


