MATH 311

Topics in Applied Mathematics I
Lecture 37:
Review for the final exam.

Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1-3.6, 4.1-4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.
- Change of basis for a linear operator.
- Similarity of matrices.

Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1-5.6, 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Bases of eigenvectors, diagonalization
- Euclidean structure in \mathbb{R}^{n} (length, angle, dot product)
- Inner products and norms
- Orthogonal complement, orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Topics for the final exam: Part IV

Vector analysis (L/C 8.1-8.4, 9.1-9.5, 10.1-10.3, 11.1-11.3)

- Gradient, divergence, and curl
- Fubini's Theorem
- Change of coordinates in a multiple integral
- Geometric meaning of the determinant
- Length of a curve
- Line integrals
- Green's Theorem
- Conservative vector fields
- Area of a surface
- Surface integrals
- Gauss' Theorem
- Stokes' Theorem

Problem. Let V be the vector space spanned by functions $f_{1}(x)=x \sin x, f_{2}(x)=x \cos x$, $f_{3}(x)=\sin x$, and $f_{4}(x)=\cos x$.
Consider the linear operator $D: V \rightarrow V$, $D=d / d x$.
(a) Find the matrix A of the operator D relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.
(b) Find the eigenvalues of A.
(c) Is the matrix A diagonalizable?
A is a 4×4 matrix whose columns are coordinates of functions $D f_{i}=f_{i}^{\prime}$ relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.
$f_{1}^{\prime}(x)=(x \sin x)^{\prime}=x \cos x+\sin x=f_{2}(x)+f_{3}(x)$,
$f_{2}^{\prime}(x)=(x \cos x)^{\prime}=-x \sin x+\cos x$

$$
=-f_{1}(x)+f_{4}(x)
$$

$f_{3}^{\prime}(x)=(\sin x)^{\prime}=\cos x=f_{4}(x)$,
$f_{4}^{\prime}(x)=(\cos x)^{\prime}=-\sin x=-f_{3}(x)$.
Thus $A=\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$.

Eigenvalues of A are roots of its characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rrrr}
-\lambda & -1 & 0 & 0 \\
1 & -\lambda & 0 & 0 \\
1 & 0 & -\lambda & -1 \\
0 & 1 & 1 & -\lambda
\end{array}\right|
$$

Expand the determinant by the 1st row:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=-\lambda\left|\begin{array}{rrr}
-\lambda & 0 & 0 \\
0 & -\lambda & -1 \\
1 & 1 & -\lambda
\end{array}\right|-(-1)\left|\begin{array}{rrr}
1 & 0 & 0 \\
1 & -\lambda & -1 \\
0 & 1 & -\lambda
\end{array}\right| \\
& =\lambda^{2}\left(\lambda^{2}+1\right)+\left(\lambda^{2}+1\right)=\left(\lambda^{2}+1\right)^{2}=(\lambda-i)^{2}(\lambda+i)^{2} .
\end{aligned}
$$

The roots are i and $-i$, both of multiplicity 2 .

One can show that both eigenspaces of A are one-dimensional. The eigenspace for i is spanned by $(0,0, i, 1)$ and the eigenspace for $-i$ is spanned by $(0,0,-i, 1)$. It follows that the matrix A is not diagonalizable in the complex vector space \mathbb{C}^{4} (let alone real vector space \mathbb{R}^{4}).

There is also an indirect way to show that A is not diagonalizable. Assume the contrary. Then $A=U P U^{-1}$, where U is an invertible matrix with complex entries and

$$
P=\left(\begin{array}{rrrr}
i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i
\end{array}\right)
$$

(note that P should have the same characteristic polynomial as A). This would imply that $A^{2}=U P^{2} U^{-1}$. But $P^{2}=-I$ so that $A^{2}=U(-I) U^{-1}=-I$.
Let us check if $A^{2}=-I$.

$$
A^{2}=\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{array}\right)^{2}=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -2 & -1 & 0 \\
2 & 0 & 0 & -1
\end{array}\right)
$$

Since $A^{2} \neq-l$, we have a contradiction. Thus the matrix A is not diagonalizable in \mathbb{C}^{4}.

Problem. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}$, where
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
(a) Find the matrix B of the operator L.
(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.
(d) Find the matrix of the operator L^{2017} (L applied 2017 times).
$L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}, \quad \mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Let $\mathbf{v}=(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. Then

$$
\begin{gathered}
L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
3 / 5 & 0 & -4 / 5 \\
x & y & z
\end{array}\right| \\
=\left|\begin{array}{cc}
0 & -4 / 5 \\
y & z
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
3 / 5 & -4 / 5 \\
x & z
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
3 / 5 & 0 \\
x & y
\end{array}\right| \mathbf{e}_{3} \\
=\frac{4}{5} y \mathbf{e}_{1}-\left(\frac{4}{5} x+\frac{3}{5} z\right) \mathbf{e}_{2}+\frac{3}{5} y \mathbf{e}_{3}=\left(\frac{4}{5} y,-\frac{4}{5} x-\frac{3}{5} z, \frac{3}{5} y\right) .
\end{gathered}
$$

In particular, $L\left(\mathbf{e}_{1}\right)=\left(0,-\frac{4}{5}, 0\right), \quad L\left(\mathbf{e}_{2}\right)=\left(\frac{4}{5}, 0, \frac{3}{5}\right)$, $L\left(\mathbf{e}_{3}\right)=\left(0,-\frac{3}{5}, 0\right)$.

Therefore $B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
The range of the operator L is spanned by columns of the matrix B. It follows that Range (L) is the plane spanned by $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(4,0,3)$.
The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B \mathbf{x}=\mathbf{0}$.

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow x+\frac{3}{4} z=y=0 \Longrightarrow x=t(-3 / 4,0,1)
\end{gathered}
$$

Alternatively, the kernel of L is the set of vectors
$\mathbf{v} \in \mathbb{R}^{3}$ such that $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\mathbf{0}$.
It follows that this is the line spanned by
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Characteristic polynomial of the matrix B :

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 / 5 & 0 \\
-4 / 5 & -\lambda & -3 / 5 \\
0 & 3 / 5 & -\lambda
\end{array}\right| \\
=-\lambda^{3}-(3 / 5)^{2} \lambda-(4 / 5)^{2} \lambda=-\lambda^{3}-\lambda=-\lambda\left(\lambda^{2}+1\right) .
\end{gathered}
$$

The eigenvalues are $0, i$, and $-i$.

The matrix of the operator L^{2017} is B^{2017}.
Since the matrix B has eigenvalues $0, i$, and $-i$, it is diagonalizable in \mathbb{C}^{3}. Namely, $B=U D U^{-1}$, where U is an invertible matrix with complex entries and

$$
D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Then $B^{2017}=U D^{2017} U^{-1}$. We have that $D^{2017}=$ $=\operatorname{diag}\left(0, i^{2017},(-i)^{2017}\right)=\operatorname{diag}(0, i,-i)=D$. Hence

$$
B^{2017}=U D U^{-1}=B=\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right)
$$

Problem. Find a quadratic polynomial that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$.

The best least squares fit is a polynomial $q(x)$ that minimizes the distance relative to the integral norm

$$
\|f-q\|=\left(\int_{-1}^{1}|f(x)-q(x)|^{2} d x\right)^{1 / 2}
$$

over all polynomials of degree 2.

The norm $\|\cdot\|$ is induced by the inner product

$$
\langle g, h\rangle=\int_{-1}^{1} g(x) h(x) d x
$$

Therefore $\|f-p\|$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_{3} of quadratic polynomials.
Suppose that p_{0}, p_{1}, p_{2} is an orthogonal basis for \mathcal{P}_{3}. Then
$q(x)=\frac{\left\langle f, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)+\frac{\left\langle f, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)+\frac{\left\langle f, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}(x)$.

An orthogonal basis can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1, x, x^{2}$:

$$
p_{0}(x)=1
$$

$$
p_{1}(x)=x-\frac{\left\langle x, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle}=x,
$$

$$
p_{2}(x)=x^{2}-\frac{\left\langle x^{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)-\frac{\left\langle x^{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)
$$

$$
=x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle}-\frac{\left\langle x^{2}, x\right\rangle}{\langle x, x\rangle} x=x^{2}-\frac{1}{3}
$$

Problem. Find a quadratic polynomial that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$.

Solution:

$$
\begin{aligned}
q(x) & =\frac{\left\langle f, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)+\frac{\left\langle f, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)+\frac{\left\langle f, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}(x) \\
& =\frac{1}{2} p_{0}(x)+\frac{15}{16} p_{2}(x) \\
& =\frac{1}{2}+\frac{15}{16}\left(x^{2}-\frac{1}{3}\right)=\frac{3}{16}\left(5 x^{2}+1\right) .
\end{aligned}
$$

Area, volume, and determinants

- 2×2 determinants and plane geometry

Let P be a parallelogram in the plane \mathbb{R}^{2}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are represented by adjacent sides of P. Then area $(P)=|\operatorname{det} A|$, where $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, a matrix whose columns are \mathbf{v}_{1} and \mathbf{v}_{2}.
Consider a linear operator $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L_{A}(\mathbf{v})=A \mathbf{v}$ for any column vector \mathbf{v}. Then $\operatorname{area}\left(L_{A}(D)\right)=|\operatorname{det} A| \operatorname{area}(D)$ for any bounded domain D.

- 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^{3}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$ are represented by adjacent edges of Π. Then volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, a matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
Similarly, volume $\left(L_{B}(D)\right)=|\operatorname{det} B|$ volume (D) for any bounded domain $D \subset \mathbb{R}^{3}$.

Parallelepiped is a prism.
$($ Volume $)=($ area of the base $) \times($ height $)$
Area of the base $=|\mathbf{y} \times \mathbf{z}|$
Volume $=|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

Tetrahedron is a pyramid.
(Volume) $=\frac{1}{3}$ (area of the base) \times (height)
Area of the base $=\frac{1}{2}|\mathbf{y} \times \mathbf{z}|$
\Longrightarrow Volume $=\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

