Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Problem 2 Let
$$A = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

(i) Find the rank and the nullity of the matrix A.

(ii) Find a basis for the row space of A, then extend this basis to a basis for \mathbb{R}^4 .

(iii) Find a basis for the nullspace of A.

Problem 3 Let A and B be two matrices such that the product AB is well defined.

- (i) Prove that $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.
- (ii) Prove that $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$.

Problem 4 Let V be a subspace of $C^{\infty}(\mathbb{R})$ spanned by functions e^x and e^{-x} . Let L be a linear operator on V such that

$$\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$

is the matrix of L relative to the basis e^x , e^{-x} . Find the matrix of L relative to the basis $\cosh x = \frac{1}{2}(e^x + e^{-x})$, $\sinh x = \frac{1}{2}(e^x - e^{-x})$.

Problem 5 Let $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$.

- (i) Find all eigenvalues of the matrix A.
- (ii) For each eigenvalue of A, find an associated eigenvector.
- (iii) Is the matrix A diagonalizable? Explain.
- (iv) Find all eigenvalues of the matrix A^2 .

Problem 6 Find a linear polynomial which is the best least squares fit to the following data: