MATH 323 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

Matrices

Definition. An **m-by-n matrix** is a rectangular array of numbers that has *m* rows and *n* columns:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Notation: $A = (a_{ij})_{1 \le i \le n, 1 \le j \le m}$ or simply $A = (a_{ij})$ if the dimensions are known.

Matrix algebra: linear operations

Addition: two matrices of the same dimensions can be added by adding their corresponding entries.

Scalar multiplication: to multiply a matrix A by a scalar r, one multiplies each entry of A by r.

Zero matrix O: all entries are zeros.

Negative: -A is defined as (-1)A.

Subtraction: A - B is defined as A + (-B).

As far as the linear operations are concerned, the $m \times n$ matrices can be regarded as *mn*-dimensional vectors.

Properties of linear operations

$$(A + B) + C = A + (B + C)$$

$$A + B = B + A$$

$$A + O = O + A = A$$

$$A + (-A) = (-A) + A = O$$

$$r(sA) = (rs)A$$

$$r(A + B) = rA + rB$$

$$(r + s)A = rA + sA$$

$$1A = A$$

$$0A = O$$

$$(-1)A = -A$$

Dot product

Definition. The **dot product** of *n*-dimensional vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ is a scalar

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = \sum_{k=1}^n x_k y_k.$$

The dot product is also called the scalar product.

Matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A = (a_{ik})$ be an $m \times n$ matrix and $B = (b_{kj})$ be an $n \times p$ matrix. The **product** AB is defined to be the $m \times p$ matrix $C = (c_{ij})$ such that $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$\begin{pmatrix} * & * & * \\ \hline \ast & \ast & \ast \end{pmatrix} \begin{pmatrix} * & * & \ast & \ast \\ * & * & \ast & \ast \\ * & * & \ast & \ast \end{pmatrix} = \begin{pmatrix} * & * & * & \ast \\ * & * & \ast & \ast \\ * & \ast & \ast & \ast \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \hline a_{21} & a_{22} & \dots & a_{2n} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}$$
$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p)$$
$$\implies AB = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{w}_1 & \mathbf{v}_1 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_1 \cdot \mathbf{w}_p \\ \mathbf{v}_2 \cdot \mathbf{w}_1 & \mathbf{v}_2 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_2 \cdot \mathbf{w}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_m \cdot \mathbf{w}_1 & \mathbf{v}_m \cdot \mathbf{w}_2 & \dots & \mathbf{v}_m \cdot \mathbf{w}_p \end{pmatrix}$$

Examples.

$$\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix} = \left(\sum_{k=1}^n x_k y_k\right), \\
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix} (x_1, x_2, \dots, x_n) = \begin{pmatrix}
y_1 x_1 & y_1 x_2 & \dots & y_1 x_n \\
y_2 x_1 & y_2 x_2 & \dots & y_2 x_n \\
\vdots & \vdots & \ddots & \vdots \\
y_n x_1 & y_n x_2 & \dots & y_n x_n
\end{pmatrix}$$

.

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 & 1 & 1 \\ -2 & 5 & 6 & 0 \\ 1 & 7 & 4 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 3 & 0 \\ -3 & 17 & 16 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 3 & 1 & 1 \\ -2 & 5 & 6 & 0 \\ 1 & 7 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$$
is not defined

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Matrix representation of the system:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff A\mathbf{x} = \mathbf{b},$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

.

Properties of matrix multiplication:

$$(AB)C = A(BC)$$
(associative law) $(A+B)C = AC + BC$ (distributive law #1) $C(A+B) = CA + CB$ (distributive law #2) $(rA)B = A(rB) = r(AB)$

Any of the above identities holds provided that matrix sums and products are well defined. If A and B are $n \times n$ matrices, then both AB and BA are well defined $n \times n$ matrices.

However, in general, $AB \neq BA$.

Example. Let
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
Then $AB = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$, $BA = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.

If *AB* does equal *BA*, we say that the matrices *A* and *B* commute.

Problem. Let A and B be arbitrary $n \times n$ matrices. Is it true that $(A - B)(A + B) = A^2 - B^2$?

$$(A-B)(A+B) = (A-B)A + (A-B)B$$
$$= (AA - BA) + (AB - BB)$$
$$= A^{2} + AB - BA - B^{2}$$

Hence $(A - B)(A + B) = A^2 - B^2$ if and only if A commutes with B.

Diagonal matrices

If $A = (a_{ij})$ is a square matrix, then the entries a_{ii} are called **diagonal entries**. A square matrix is called **diagonal** if all non-diagonal entries are zeros.

Example.
$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, denoted diag $(7, 1, 2)$.

Let
$$A = \text{diag}(s_1, s_2, ..., s_n)$$
, $B = \text{diag}(t_1, t_2, ..., t_n)$.
Then $A + B = \text{diag}(s_1 + t_1, s_2 + t_2, ..., s_n + t_n)$,
 $rA = \text{diag}(rs_1, rs_2, ..., rs_n)$.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -7 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Theorem Let $A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$, $B = \operatorname{diag}(t_1, t_2, \ldots, t_n)$.

Then
$$A + B = \text{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n),$$

 $rA = \text{diag}(rs_1, rs_2, \dots, rs_n).$
 $AB = \text{diag}(s_1t_1, s_2t_2, \dots, s_nt_n).$

In particular, diagonal matrices always commute (i.e., AB = BA).

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 7a_{11} & 7a_{12} & 7a_{13} \\ a_{21} & a_{22} & a_{23} \\ 2a_{31} & 2a_{32} & 2a_{33} \end{pmatrix}$$

Theorem Let $D = \text{diag}(d_1, d_2, \ldots, d_m)$ and A be an $m \times n$ matrix. Then the matrix DA is obtained from A by multiplying the *i*th row by d_i for $i = 1, 2, \ldots, m$:

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix} \implies DA = \begin{pmatrix} d_1 \mathbf{v}_1 \\ d_2 \mathbf{v}_2 \\ \vdots \\ d_m \mathbf{v}_m \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 7a_{11} & a_{12} & 2a_{13} \\ 7a_{21} & a_{22} & 2a_{23} \\ 7a_{31} & a_{32} & 2a_{33} \end{pmatrix}$$

Theorem Let $D = \text{diag}(d_1, d_2, \ldots, d_n)$ and A be an $m \times n$ matrix. Then the matrix AD is obtained from A by multiplying the *i*th column by d_i for $i = 1, 2, \ldots, n$:

$$A = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$$

$$\implies AD = (d_1 \mathbf{w}_1, d_2 \mathbf{w}_2, \dots, d_n \mathbf{w}_n)$$

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The $n \times n$ identity matrix is denoted I_n or simply I.

$$I_1 = (1), \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

In general, $I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = A I_n = A$.

Inverse matrix

Let $\mathcal{M}_{n,n}(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. We can **add**, **subtract**, and **multiply** such matrices. What about **division**?

Definition. Let A be an $n \times n$ matrix. Suppose there exists an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

Then the matrix A is called **invertible** and B is called the **inverse** of A (denoted A^{-1}).

A non-invertible square matrix is called **singular**.

$$AA^{-1} = A^{-1}A = I$$

Examples

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$C^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
Thus $A^{-1} = B$, $B^{-1} = A$, and $C^{-1} = C$.