Linear Algebra

MATH 323

Lecture 9: Subspaces of vector spaces.

Span. Spanning set.

Abstract vector space

A *vector space* is a set V equipped with two operations, addition $V \times V \ni (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y} \in V$ and scalar multiplication $\mathbb{R} \times V \ni (r, \mathbf{x}) \mapsto r\mathbf{x} \in V$, that have the following properties:

- A1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$;
- A2. (x + y) + z = x + (y + z) for all $x, y, z \in V$;
- A3. there exists an element of V, called the *zero vector* and denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$:
- A4. for any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$;
- A5. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$;
- A6. $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
- A7. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
- A8. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.
- $x + y = z \iff x = z y$ for all $x, y, z \in V$.
- $\bullet \ \ \mathbf{x}+\mathbf{z}=\mathbf{y}+\mathbf{z} \Longleftrightarrow \mathbf{x}=\mathbf{y} \ \ \text{for all} \ \mathbf{x},\mathbf{y},\mathbf{z} \in \mathit{V}.$
- $0\mathbf{x} = \mathbf{0}$ for any $\mathbf{x} \in V$.
- $(-1)\mathbf{x} = -\mathbf{x}$ for any $\mathbf{x} \in V$.

Examples of vector spaces

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \dots) , $x_i \in \mathbb{R}$
- {**0**}: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$
- $C^1(\mathbb{R})$: all continuously differentiable functions
- $f: \mathbb{R} \to \mathbb{R}$
 - $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \to \mathbb{R}$
 - \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $\mathcal{F}(\mathbb{R})$: all functions $f: \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $\mathcal{F}(\mathbb{R})$.
 - \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_k x^k$
 - \mathcal{P}_n : polynomials of degree less than n
- \mathcal{P}_n is a subspace of \mathcal{P} .

Subspaces of vector spaces

Counterexamples.

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- \mathbb{Q}^n : vectors with rational coordinates

 \mathbb{Q}^n is not a subspace of \mathbb{R}^n .

 $\sqrt{2}(1,1,\ldots,1)\notin\mathbb{Q}^n \implies \mathbb{Q}^n$ is not a vector space (scaling is not well defined).

- ullet R with the standard linear operations
- ullet \mathbb{R}_+ with the operations \oplus and \odot

 \mathbb{R}_+ is not a subspace of \mathbb{R} since the linear operations do not agree.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\mathbf{x}, \mathbf{y} \in S \implies \mathbf{x} + \mathbf{y} \in S,$$

 $\mathbf{x} \in S \implies r\mathbf{x} \in S \text{ for all } r \in \mathbb{R}.$

Sketch of the proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V.

Example. $V = \mathbb{R}^2$.

• The line x - y = 0 is a subspace of \mathbb{R}^2 .

The line consists of all vectors of the form (t,t), $t \in \mathbb{R}$. $(t,t)+(s,s)=(t+s,t+s) \implies$ closed under addition $r(t,t)=(rt,rt) \implies$ closed under scaling

• The parabola $y = x^2$ is not a subspace of \mathbb{R}^2 .

It is enough to find one explicit counterexample.

Counterexample 1:
$$(1,1) + (-1,1) = (0,2)$$
.

(1,1) and (-1,1) lie on the parabola while (0,2) does not \implies not closed under addition

Counterexample 2:
$$2(1,1) = (2,2)$$
.

(1,1) lies on the parabola while (2,2) does not \implies not closed under scaling

Example. $V = \mathbb{R}^3$.

- The plane z = 0 is a subspace of \mathbb{R}^3 .
- The plane z=1 is not a subspace of \mathbb{R}^3 .
- The line t(1,1,0), $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 and a subspace of the plane z=0.
- The line (1,1,1)+t(1,-1,0), $t\in\mathbb{R}$ is not a subspace of \mathbb{R}^3 as it lies in the plane x+y+z=3, which does not contain $\mathbf{0}$
- In general, a straight line or a plane in \mathbb{R}^3 is a subspace if and only if it passes through the origin.

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Any solution (x_1, x_2, \dots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all $b_i = 0$.

Theorem The solution set of a system of linear equations in n variables is a subspace of \mathbb{R}^n if and only if all equations are homogeneous.

Proof: "only if": the zero vector $\mathbf{0} = (0, 0, \dots, 0)$, which belongs to every subspace, is a solution only if all equations are homogeneous.

"if": a system of homogeneous linear equations is equivalent to a matrix equation $A\mathbf{x} = \mathbf{0}$, where A is the coefficient matrix of the system and all vectors are regarded as column vectors.

 $A\mathbf{0} = \mathbf{0} \implies \mathbf{0}$ is a solution \implies solution set is not empty.

If $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$ then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0}$ \implies solution set is closed under addition.

If $A\mathbf{x} = \mathbf{0}$ then $A(r\mathbf{x}) = r(A\mathbf{x}) = \mathbf{0}$ \implies solution set is closed under scaling.

Thus the solution set is a subspace of \mathbb{R}^n .

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- diagonal matrices: b = c = 0
- upper triangular matrices: c = 0
- lower triangular matrices: b = 0
- symmetric matrices $(A^T = A)$: b = c
- anti-symmetric (or skew-symmetric) matrices
- $(A^T = -A)$: a = d = 0, c = -b
- matrices with zero trace: a + d = 0 (trace = the sum of diagonal entries)
- matrices with zero determinant, ad bc = 0, **do not** form a subspace: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Consider the set L of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

Theorem L is a subspace of V.

Proof: First of all, L is not empty. For example, $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$ belongs to L.

The set L is closed under addition since

$$(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)+(s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_n\mathbf{v}_n)=$$

= $(r_1+s_1)\mathbf{v}_1+(r_2+s_2)\mathbf{v}_2+\cdots+(r_n+s_n)\mathbf{v}_n.$

The set L is closed under scalar multiplication since $t(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)=(tr_1)\mathbf{v}_1+(tr_2)\mathbf{v}_2+\cdots+(tr_n)\mathbf{v}_n.$

Thus L is a subspace of V.

Span: implicit definition

Let S be a subset of a vector space V.

Definition. The **span** of the set S, denoted Span(S), is the smallest subspace of V that contains S. That is,

- $\operatorname{Span}(S)$ is a subspace of V;
- for any subspace $W \subset V$ one has $S \subset W \implies \operatorname{Span}(S) \subset W$.

Remark. The span of any set $S \subset V$ is well defined (namely, it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

- If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ then $\mathrm{Span}(S)$ is the set of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.
- If S is an infinite set then $\mathrm{Span}(S)$ is the set of all linear combinations $r_1\mathbf{u}_1+r_2\mathbf{u}_2+\cdots+r_k\mathbf{u}_k$, where $\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k\in S$ and $r_1,r_2,\ldots,r_k\in\mathbb{R}$ $(k\geq 1)$.
 - If S is the empty set then $\operatorname{Span}(S) = \{\mathbf{0}\}.$

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

• The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ consists of all matrices of the form

$$a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

This is the subspace of diagonal matrices.

• The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ consists of all matrices of the form

$$a\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & c \\ c & b \end{pmatrix}.$$

This is the subspace of symmetric matrices.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is the subspace of anti-symmetric matrices.
- The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is the subspace of upper triangular matrices.
- The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ is the entire space $\mathcal{M}_{2,2}(\mathbb{R})$.

Spanning set

Definition. A subset S of a vector space V is called a **spanning set** for V if Span(S) = V.

Examples.

• Vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ form a spanning set for \mathbb{R}^3 as $(x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$.

• Matrices
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

form a spanning set for $\,\mathcal{M}_{2,2}(\mathbb{R})\,$ as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Problem Let $\mathbf{v}_1 = (1, 2, 0)$, $\mathbf{v}_2 = (3, 1, 1)$, and $\mathbf{w} = (4, -7, 3)$. Determine whether \mathbf{w} belongs to $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

We have to check if there exist $r_1, r_2 \in \mathbb{R}$ such that $\mathbf{w} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2$. This vector equation is equivalent to a system of linear equations:

$$\begin{cases} 4 = r_1 + 3r_2 \\ -7 = 2r_1 + r_2 \\ 3 = 0r_1 + r_2 \end{cases} \iff \begin{cases} r_1 = -5 \\ r_2 = 3 \end{cases}$$

Thus $\mathbf{w} = -5\mathbf{v}_1 + 3\mathbf{v}_2$ is in $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Take any vector $\mathbf{w} = (a, b) \in \mathbb{R}^2$. We have to check that there exist $r_1, r_2 \in \mathbb{R}$ such that

$$\mathbf{w} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = a \\ 5r_1 + 3r_2 = b \end{cases}$$

Coefficient matrix:
$$C = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$$
. det $C = 1 \neq 0$.

Since the matrix C is invertible, the system has a unique solution for any a and b.

Thus $\operatorname{Span}(\mathbf{v}_1,\mathbf{v}_2)=\mathbb{R}^2$.

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Alternative solution: First let us show that vectors $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$ belong to $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2)$.

$$\mathbf{e}_{1} = r_{1}\mathbf{v}_{1} + r_{2}\mathbf{v}_{2} \iff \begin{cases} 2r_{1} + r_{2} = 1 \\ 5r_{1} + 3r_{2} = 0 \end{cases} \iff \begin{cases} r_{1} = 3 \\ r_{2} = -5 \end{cases}$$

$$\mathbf{e}_2 = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = 0 \\ 5r_1 + 3r_2 = 1 \end{cases} \iff \begin{cases} r_1 = -1 \\ r_2 = 2 \end{cases}$$
Thus, $\mathbf{e}_1 = 3\mathbf{v}_1 = 5\mathbf{v}_2$ and $\mathbf{e}_2 = -\mathbf{v}_1 + 2\mathbf{v}_2$

Thus $\mathbf{e}_1 = 3\mathbf{v}_1 - 5\mathbf{v}_2$ and $\mathbf{e}_2 = -\mathbf{v}_1 + 2\mathbf{v}_2$. Then for any vector $\mathbf{w} = (a, b) \in \mathbb{R}^2$ we have $\mathbf{w} = a\mathbf{e}_1 + b\mathbf{e}_2 = a(3\mathbf{v}_1 - 5\mathbf{v}_2) + b(-\mathbf{v}_1 + 2\mathbf{v}_2) = (3a - b)\mathbf{v}_1 + (-5a + 2b)\mathbf{v}_2$. **Problem** Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Remarks on the alternative solution:

Notice that \mathbb{R}^2 is spanned by vectors $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$ since $(a,b) = a\mathbf{e}_1 + b\mathbf{e}_2$.

This is why we have checked that vectors \mathbf{e}_1 and \mathbf{e}_2 belong to $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2)$. Then

$$\mathbf{e}_1, \mathbf{e}_2 \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \implies \operatorname{Span}(\mathbf{e}_1, \mathbf{e}_2) \subset \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$$

 $\implies \mathbb{R}^2 \subset \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \implies \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) = \mathbb{R}^2.$

In general, to show that $\operatorname{Span}(S_1) = \operatorname{Span}(S_2)$, it is enough to check that $S_1 \subset \operatorname{Span}(S_2)$ and $S_2 \subset \operatorname{Span}(S_1)$.

More properties of span

Let S_0 and S be subsets of a vector space V.

- $S_0 \subset S \implies \operatorname{Span}(S_0) \subset \operatorname{Span}(S)$.
- $\operatorname{Span}(S_0) = V$ and $S_0 \subset S \Longrightarrow \operatorname{Span}(S) = V$.
- If $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ is a spanning set for V and \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

Indeed, if
$$\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$$
, then $t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k = (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k$.

• $\operatorname{Span}(S_0 \cup \{\mathbf{v}_0\}) = \operatorname{Span}(S_0)$ if and only if $\mathbf{v}_0 \in \operatorname{Span}(S_0)$.

If $\mathbf{v}_0 \in \operatorname{Span}(S_0)$, then $S_0 \cup \mathbf{v}_0 \subset \operatorname{Span}(S_0)$, which implies $\operatorname{Span}(S_0 \cup \{\mathbf{v}_0\}) \subset \operatorname{Span}(S_0)$. On the other hand, $\operatorname{Span}(S_0) \subset \operatorname{Span}(S_0 \cup \{\mathbf{v}_0\})$.