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Linear Algebra

Lecture 10:

Spanning set (continued).
Linear independence.



Spanning set

Let S be a subset of a vector space V .

Definition. The span of the set S is the smallest
subspace W ⊂ V that contains S . If S is not

empty then W = Span(S) consists of all linear
combinations r1v1 + r2v2 + · · ·+ rkvk such that

v1, . . . , vk ∈ S and r1, . . . , rk ∈ R.

We say that the set S spans the subspace W or
that S is a spanning set for W .



Properties of spanning sets

Let S0 and S be subsets of a vector space V .

• S0 ⊂ S =⇒ Span(S0) ⊂ Span(S).

• Span(S0) = V and S0 ⊂ S =⇒ Span(S) = V .

• If v0, v1, . . . , vk is a spanning set for V and v0
is a linear combination of vectors v1, . . . , vk then

v1, . . . , vk is also a spanning set for V .

Indeed, if v0 = r1v1 + · · ·+ rkvk , then
t0v0 + t1v1 + · · ·+ tkvk = (t0r1 + t1)v1 + · · ·+ (t0rk + tk)vk .

• Span(S0 ∪ {v0}) = Span(S0) if and only if

v0 ∈ Span(S0).

“Only if” is obvious. If v0 ∈ Span(S0), then
S0 ∪ {v0} ⊂ Span(S0), hence Span(S0 ∪ {v0}) ⊂ Span(S0).
On the other hand, Span(S0) ⊂ Span(S0 ∪ {v0}).



Linear independence

Definition. Let V be a vector space. Vectors

v1, v2, . . . , vk ∈ V are called linearly dependent
if they satisfy a relation

r1v1 + r2v2 + · · ·+ rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are

called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find

some distinct linearly dependent vectors v1, . . . , vk
in S . Otherwise S is linearly independent.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) in R

3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0
=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0
1 0

)

, and E22 =

(

0 0
0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Examples of linear independence

• Polynomials 1, x , x2, . . . , xn.

a0 + a1x + a2x
2 + · · ·+ anx

n = 0 identically
=⇒ ai = 0 for 0 ≤ i ≤ n

• The infinite set {1, x , x2, . . . , xn, . . . }.

• Polynomials p1(x) = 1, p2(x) = x − 1, and
p3(x) = (x − 1)2.

a1p1(x) + a2p2(x) + a3p3(x) = a1 + a2(x − 1) + a3(x − 1)2 =
= (a1 − a2 + a3) + (a2 − 2a3)x + a3x

2.

Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically
=⇒ a1 − a2 + a3 = a2 − 2a3 = a3 = 0
=⇒ a1 = a2 = a3 = 0



Problem Let v1 = (1, 2, 0), v2 = (3, 1, 1), and
v3 = (4,−7, 3). Determine whether vectors
v1, v2, v3 are linearly independent.

We have to check if there exist r1, r2, r3 ∈ R not all

zero such that r1v1 + r2v2 + r3v3 = 0.
This vector equation is equivalent to a system







r1 + 3r2 + 4r3 = 0

2r1 + r2 − 7r3 = 0
0r1 + r2 + 3r3 = 0





1 3 4 0

2 1 −7 0
0 1 3 0





The vectors v1, v2, v3 are linearly dependent if and

only if the matrix A = (v1, v2, v3) is singular.
We obtain that detA = 0.



Theorem The following conditions are equivalent:
(i) vectors v1, . . . , vk are linearly dependent;

(ii) one of vectors v1, . . . , vk is a linear
combination of the other k − 1 vectors.

Proof: (i) =⇒ (ii) Suppose that

r1v1 + r2v2 + · · ·+ rkvk = 0,

where ri 6= 0 for some 1 ≤ i ≤ k . Then

vi = − r1
ri
v1 − · · · − ri−1

ri
vi−1 −

ri+1

ri
vi+1 − · · · − rk

ri
vk .

(ii) =⇒ (i) Suppose that

vi = s1v1 + · · ·+ si−1vi−1 + si+1vi+1 + · · ·+ skvk

for some scalars sj . Then

s1v1 + · · ·+ si−1vi−1 − vi + si+1vi+1 + · · ·+ skvk = 0.



Let A be an n×m matrix. Consider a matrix equation
Ax = 0, where 0 is the zero column vector (of dimension n)
and x is an unknown column vector (of dimension m).

Theorem The equation Ax = 0 admits a nonzero solution if
and only if the columns of the matrix A are linearly dependent
vectors.

Proof: Let A = (aij) and x = (x1, x2, . . . , xm)
T . Then

Ax = 0 ⇐⇒









a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

















x1
x2
...
xm









=









0
0
...
0









⇐⇒ x1









a11
a21
...
an1









+ x2









a12
a22
...
an2









+ · · ·+ xm









a1m
a2m
...

anm









=









0
0
...
0









.



Corollary 1 Columns of a square matrix A are linearly
dependent if and only if detA = 0.

Idea of the proof: The equation Ax = 0 has a unique
solution if and only if A is invertible.

Corollary 2 Rows of a square matrix A are linearly dependent
if and only if detA = 0.

Proof: Rows of A are columns of the transpose matrix AT .
By Corollary 1, they are linearly dependent if and only if
detAT = 0. It remains to notice that detA = detAT .

Corollary 3 Vectors v1, v2, . . . , vm ∈ R
n are linearly

dependent whenever m > n (i.e., the number of coordinates
is less than the number of vectors).

Idea of the proof: Let A be a matrix whose columns are
vectors v1, v2, . . . , vm. The matrix equation Ax = 0 is
equivalent to a system of n linear homogeneous equations in m

variables. Since m > n, there is a free variable in the system.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R

3.

Two vectors are linearly dependent if and only if

they are parallel. Hence v1 and v2 are linearly
independent.

Vectors v1, v2, v3 are linearly independent if and

only if the matrix A = (v1, v2, v3) is invertible.

detA =

∣

∣

∣

∣

∣

∣

1 1 1
−1 0 1
1 0 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

−1 1

1 1

∣

∣

∣

∣

= 2 6= 0.

Therefore v1, v2, v3 are linearly independent.

Four vectors in R
3 are always linearly dependent.

Thus v1, v2, v3, v4 are linearly dependent.



Problem. Let A =
(

−1 1
−1 0

)

. Determine whether

matrices A, A2, and A3 are linearly independent.

We have A =

(

−1 1
−1 0

)

, A2 =

(

0 −1
1 −1

)

, A3 =

(

1 0
0 1

)

.

The task is to check if there exist r1, r2, r3 ∈ R not all zero
such that r1A+ r2A

2 + r3A
3 = O.

This matrix equation is equivalent to a system














−r1 + 0r2 + r3 = 0
r1 − r2 + 0r3 = 0
−r1 + r2 + 0r3 = 0
0r1 − r2 + r3 = 0









−1 0 1 0
1 −1 0 0

−1 1 0 0
0 −1 1 0









→









1 −1 0 0
0 1 −1 0
0 0 0 0
0 0 0 0









The row echelon form of the augmented matrix shows there is
a free variable. Hence the system has a nonzero solution so
that the matrices are linearly dependent (one relation is
A+ A2 + A3 = O).



More facts on linear independence

Let S0 and S be subsets of a vector space V .

• If S0 ⊂ S and S is linearly independent, then so is S0.

• If S0 ⊂ S and S0 is linearly dependent, then so is S .

• If S is linearly independent in V and V is a subspace of
W , then S is linearly independent in W .

• The empty set is linearly independent.

• Any set containing 0 is linearly dependent.

• Two vectors v1 and v2 are linearly dependent if and only if
one of them is a scalar multiple the other.

• Two nonzero vectors v1 and v2 are linearly dependent if
and only if either of them is a scalar multiple the other.

• If S0 is linearly independent and v0 ∈ V \ S0 then
S0 ∪ {v0} is linearly independent if and only if v0 /∈ Span(S).



Problem. Show that functions ex , e2x , and e3x

are linearly independent in C∞(R).

Suppose that aex + be2x + ce3x = 0 for all x ∈ R, where
a, b, c are constants. We have to show that a = b = c = 0.

Differentiate this identity twice:

aex + be2x + ce3x = 0,

aex + 2be2x + 3ce3x = 0,

aex + 4be2x + 9ce3x = 0.

It follows that A(x)v = 0, where

A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b

c



.



A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b

c



.

detA(x) = ex

∣

∣

∣

∣

∣

∣

1 e2x e3x

1 2e2x 3e3x

1 4e2x 9e3x

∣

∣

∣

∣

∣

∣

= exe2x

∣

∣

∣

∣

∣

∣

1 1 e3x

1 2 3e3x

1 4 9e3x

∣

∣

∣

∣

∣

∣

= exe2xe3x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
0 3 8

∣

∣

∣

∣

∣

∣

= e6x
∣

∣

∣

∣

1 2
3 8

∣

∣

∣

∣

= 2e6x 6= 0.

Since the matrix A(x) is invertible, we obtain

A(x)v = 0 =⇒ v = 0 =⇒ a = b = c = 0



Wronskian

Let f1, f2, . . . , fn be smooth functions on an interval

[a, b]. The Wronskian W [f1, f2, . . . , fn] is a
function on [a, b] defined by

W [f1, f2, . . . , fn](x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)
...

...
. . .

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem If W [f1, f2, . . . , fn](x0) 6= 0 for some

x0 ∈ [a, b] then the functions f1, f2, . . . , fn are
linearly independent in C [a, b].



Theorem Let λ1, λ2, . . . , λk be distinct real
numbers. Then the functions eλ1x , eλ2x , . . . , eλkx

are linearly independent.

W [eλ1x , eλ2x , . . . , eλkx ](x) =

∣

∣

∣

∣

∣

∣

∣

∣

eλ1x eλ2x · · · eλkx

λ1e
λ1x λ2e

λ2x · · · λke
λkx

...
...

. . .
...

λk−1
1 eλ1x λk−1

2 eλ2x · · · λk−1
k eλkx

∣

∣

∣

∣

∣

∣

∣

∣

= e(λ1+λ2+···+λk)x

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
λ1 λ2 · · · λk

...
...

. . .
...

λk−1
1 λk−1

2 · · · λk−1
k

∣

∣

∣

∣

∣

∣

∣

∣

6= 0

since the latter determinant is the transpose of the
Vandermonde determinant.


