MATH 323
 Linear Algebra

Lecture 10:

Spanning set (continued). Linear independence.

Spanning set

Let S be a subset of a vector space V.
Definition. The span of the set S is the smallest subspace $W \subset V$ that contains S. If S is not empty then $W=\operatorname{Span}(S)$ consists of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ such that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$ and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

We say that the set S spans the subspace W or that S is a spanning set for W.

Properties of spanning sets

Let S_{0} and S be subsets of a vector space V.

- $S_{0} \subset S \Longrightarrow \operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}(S)$.
- $\operatorname{Span}\left(S_{0}\right)=V$ and $S_{0} \subset S \Longrightarrow \operatorname{Span}(S)=V$.
- If $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning set for V and \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V. Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then $t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}$.
- $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)=\operatorname{Span}\left(S_{0}\right)$ if and only if $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$.
"Only if" is obvious. If $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$, then
$S_{0} \cup\left\{\mathbf{v}_{0}\right\} \subset \operatorname{Span}\left(S_{0}\right)$, hence $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right) \subset \operatorname{Span}\left(S_{0}\right)$.
On the other hand, $\operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
$x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}=\mathbf{0} \Longrightarrow(x, y, z)=\mathbf{0}$
$\Longrightarrow x=y=z=0$
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$a E_{11}+b E_{12}+c E_{21}+d E_{22}=O \Longrightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$ $\Longrightarrow a=b=c=d=0$

Examples of linear independence

- Polynomials $1, x, x^{2}, \ldots, x^{n}$.
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ identically
$\Longrightarrow \quad a_{i}=0$ for $0 \leq i \leq n$
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.
- Polynomials $p_{1}(x)=1, p_{2}(x)=x-1$, and $p_{3}(x)=(x-1)^{2}$.
$a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}=$ $=\left(a_{1}-a_{2}+a_{3}\right)+\left(a_{2}-2 a_{3}\right) x+a_{3} x^{2}$.
Hence $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=0$ identically
$\Longrightarrow \quad a_{1}-a_{2}+a_{3}=a_{2}-2 a_{3}=a_{3}=0$
$\Longrightarrow \quad a_{1}=a_{2}=a_{3}=0$

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{v}_{3}=(4,-7,3)$. Determine whether vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
We have to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}=\mathbf{0}$.

This vector equation is equivalent to a system

$$
\left\{\begin{array}{l}
r_{1}+3 r_{2}+4 r_{3}=0 \\
2 r_{1}+r_{2}-7 r_{3}=0 \\
0 r_{1}+r_{2}+3 r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|l}
1 & 3 & 4 & 0 \\
2 & 1 & -7 & 0 \\
0 & 1 & 3 & 0
\end{array}\right)\right.
$$

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is singular. We obtain that $\operatorname{det} A=0$.

Theorem The following conditions are equivalent:

(i) vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent;
(ii) one of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a linear
combination of the other $k-1$ vectors.
Proof: (i) \Longrightarrow (ii) Suppose that

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where $r_{i} \neq 0$ for some $1 \leq i \leq k$. Then

$$
\mathbf{v}_{i}=-\frac{r_{1}}{r_{i}} \mathbf{v}_{1}-\cdots-\frac{r_{i-1}}{r_{i}} \mathbf{v}_{i-1}-\frac{r_{i+1}}{r_{i}} \mathbf{v}_{i+1}-\cdots-\frac{r_{k}}{r_{i}} \mathbf{v}_{k} .
$$

(ii) \Longrightarrow (i) Suppose that

$$
\mathbf{v}_{i}=s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}
$$

for some scalars s_{j}. Then
$s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}=\mathbf{0}$.

Let A be an $n \times m$ matrix. Consider a matrix equation $A \mathbf{x}=\mathbf{0}$, where $\mathbf{0}$ is the zero column vector (of dimension n) and \mathbf{x} is an unknown column vector (of dimension m).

Theorem The equation $\mathbf{A x}=\mathbf{0}$ admits a nonzero solution if and only if the columns of the matrix A are linearly dependent vectors.
Proof: Let $A=\left(a_{i j}\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{T}$. Then

$$
\begin{gathered}
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
\Longleftrightarrow x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{n 2}
\end{array}\right)+\cdots+x_{m}\left(\begin{array}{c}
a_{1 m} \\
a_{2 m} \\
\vdots \\
a_{n m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
\end{gathered}
$$

Corollary 1 Columns of a square matrix A are linearly dependent if and only if $\operatorname{det} A=0$.

Idea of the proof: The equation $A \mathbf{x}=\mathbf{0}$ has a unique solution if and only if A is invertible.

Corollary 2 Rows of a square matrix A are linearly dependent if and only if $\operatorname{det} A=0$.
Proof: Rows of A are columns of the transpose matrix A^{T}. By Corollary 1 , they are linearly dependent if and only if $\operatorname{det} A^{T}=0$. It remains to notice that $\operatorname{det} A=\operatorname{det} A^{T}$.

Corollary 3 Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ are linearly dependent whenever $m>n$ (i.e., the number of coordinates is less than the number of vectors).
Idea of the proof: Let A be a matrix whose columns are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$. The matrix equation $A \mathbf{x}=\mathbf{0}$ is equivalent to a system of n linear homogeneous equations in m variables. Since $m>n$, there is a free variable in the system.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Two vectors are linearly dependent if and only if they are parallel. Hence \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is invertible.

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=2 \neq 0
$$

Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
Four vectors in \mathbb{R}^{3} are always linearly dependent.
Thus $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.

Problem. Let $A=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)$. Determine whether matrices A, A^{2}, and A^{3} are linearly independent.

We have $A=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right), \quad A^{2}=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right), \quad A^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
The task is to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} A+r_{2} A^{2}+r_{3} A^{3}=O$.
This matrix equation is equivalent to a system

$$
\left\{\begin{array}{l}
-r_{1}+0 r_{2}+r_{3}=0 \\
r_{1}-r_{2}+0 r_{3}=0 \\
-r_{1}+r_{2}+0 r_{3}=0 \\
0 r_{1}-r_{2}+r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|l}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right.
$$

The row echelon form of the augmented matrix shows there is a free variable. Hence the system has a nonzero solution so that the matrices are linearly dependent (one relation is $\left.A+A^{2}+A^{3}=0\right)$.

More facts on linear independence

Let S_{0} and S be subsets of a vector space V.

- If $S_{0} \subset S$ and S is linearly independent, then so is S_{0}.
- If $S_{0} \subset S$ and S_{0} is linearly dependent, then so is S.
- If S is linearly independent in V and V is a subspace of W, then S is linearly independent in W.
- The empty set is linearly independent.
- Any set containing $\mathbf{0}$ is linearly dependent.
- Two vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent if and only if one of them is a scalar multiple the other.
- Two nonzero vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent if and only if either of them is a scalar multiple the other.
- If S_{0} is linearly independent and $\mathbf{v}_{0} \in V \backslash S_{0}$ then $S_{0} \cup\left\{\mathbf{v}_{0}\right\}$ is linearly independent if and only if $\mathbf{v}_{0} \notin \operatorname{Span}(S)$.

Problem. Show that functions $e^{x}, e^{2 x}$, and $e^{3 x}$ are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $a e^{x}+b e^{2 x}+c e^{3 x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Differentiate this identity twice:

$$
\begin{gathered}
a e^{x}+b e^{2 x}+c e^{3 x}=0, \\
a e^{x}+2 b e^{2 x}+3 c e^{3 x}=0, \\
a e^{x}+4 b e^{2 x}+9 c e^{3 x}=0 .
\end{gathered}
$$

It follows that $A(x) \mathbf{v}=\mathbf{0}$, where

$$
A(x)=\left(\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

$A(x)=\left(\begin{array}{ccc}e^{x} & e^{2 x} & e^{3 x} \\ e^{x} & 2 e^{2 x} & 3 e^{3 x} \\ e^{x} & 4 e^{2 x} & 9 e^{3 x}\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
$\operatorname{det} A(x)=e^{x}\left|\begin{array}{ccc}1 & e^{2 x} & e^{3 x} \\ 1 & 2 e^{2 x} & 3 e^{3 x} \\ 1 & 4 e^{2 x} & 9 e^{3 x}\end{array}\right|=e^{x} e^{2 x}\left|\begin{array}{ccc}1 & 1 & e^{3 x} \\ 1 & 2 & 3 e^{3 x} \\ 1 & 4 & 9 e^{3 x}\end{array}\right|$
$=e^{\times} e^{2 x} e^{3 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|=e^{6 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|=e^{6 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 4 & 9\end{array}\right|$
$=e^{6 x}\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8\end{array}\right|=e^{6 x}\left|\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right|=2 e^{6 x} \neq 0$.
Since the matrix $A(x)$ is invertible, we obtain $A(x) \mathbf{v}=\mathbf{0} \Longrightarrow \mathbf{v}=\mathbf{0} \Longrightarrow a=b=c=0$

Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ be smooth functions on an interval $[a, b]$. The Wronskian $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ is a function on $[a, b]$ defined by

$$
W\left[f_{1}, f_{2}, \ldots, f_{n}\right](x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right| .
$$

Theorem If $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$ then the functions $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent in $C[a, b]$.

Theorem Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct real numbers. Then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

$$
\begin{aligned}
& W\left[e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}\right](x)=\left|\begin{array}{cccc}
e^{\lambda_{1} x} & e^{\lambda_{2} x} & \cdots & e^{\lambda_{k} x} \\
\lambda_{1} e^{\lambda_{1} x} & \lambda_{2} e^{\lambda_{2} x} & \cdots & \lambda_{k} e^{\lambda_{k} x} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{k-1} e^{\lambda_{1} x} & \lambda_{2}^{k-1} e^{\lambda_{2} x} & \cdots & \lambda_{k}^{k-1} e^{\lambda_{k} x}
\end{array}\right| \\
& \quad=e^{\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right) x}\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k}^{k-1}
\end{array}\right| \neq 0
\end{aligned}
$$

since the latter determinant is the transpose of the Vandermonde determinant.

