MATH 323
Linear Algebra

Lecture 11:
Wronskian.

Basis of a vector space.
Dimension.



Linear independence

Definition. Let V be a vector space. Vectors
Vi,Vo,...,Vx € V are called linearly dependent
if they satisfy a relation

nvi—+ vy + -+ nve =0,

where the coefficients ri,...,r € R are not all
equal to zero. Otherwise vectors vi,V,, ...,V are
called linearly independent. That is, if
nvi+nvo+ - -4+nvy=0 — n=---=r=0.

A set S C V is linearly dependent if one can find
some distinct linearly dependent vectors vy, ..., vk
in S. Otherwise S is linearly independent.



Theorem Vectors vi,...,v, € V are linearly
dependent if and only if one of them is a linear
combination of the other kK — 1 vectors.

Examples of linear independence.
e \ectors e; = (1,0,0), e; =(0,1,0), and
es = (0,0,1) in R3,

e Matrices Ej; = <(1) 8) Eir, = <8 é)

00 00
E21—<1 O),and E22—<0 1)

e Polynomials 1,x,x ...,x",...



Wronskian

Let fi,f,...,f, be smooth functions on an interval
[a, b]. The Wronskian W{f, f, ... f] is a
function on [a, b] defined by

A9 A0 7()
WIA, f,.... £](x) = 1(x) 2(:X) ,,(.x)
00 B0 e T

Theorem If W[f,f,..., f](x0) # 0 for some
Xo € [a, b] then the functions fi, f, ..., f, are
linearly independent in C|a, b].



Proof: Assume that rifi(x) + rfy(x) + -+ rafa(x) = 0 for
all x € [a, b], where r,r,...,r, are constants. We have to
show that r;, =0, 1 < <n.

Differentiating this identity n — 1 times, we get n — 1 more
identities
nf{(x) + nf(x) + -+ mf(x) =0,

AR V() + RE" V() + -+ "D (x) =0,

We can consider these n identities as a system of linear
homogeneous equations (depending on the parameter x) in
variables ry, r,...,r,. Note that we need a solution common
for all values of the parameter.

By construction, W(fi, f, ..., f,](x) = det A(x), where A(x)
is the coefficient matrix of the system. Since det A(xp) # 0,
the matrix A(xo) is invertible. Hence n=rn=---=r, =0
is the only solution of the system for x = xp (let alone all

x € [a, b]).



Theorem Let A, Ay, ..., \¢ be distinct real

numbers. Then the functions e, e*x ...
are linearly independent.
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since the latter determinant is the transpose of the
Vandermonde determinant.
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Basis

Definition. Let V be a vector space. Any linearly
independent spanning set for V' is called a basis.

Suppose that a nonempty set S C V is a basis for V.

“Spanning set” means that any vector v € V can be
represented as a linear combination

V = vy + nvy + -+ Vg,
where vy, ..., v, are distinct vectors from S and

r,...,re € R. “Linearly independent” implies that the above
representation is unique:

V=rVi+nVy+ -+ Vg =rvi+ nv,+ -+ rvg
= (n—rvit(n—rva+---+(rn—r)vy=0

— n—-n=n—-rn=...=r—r.=0



Examples. e Standard basis for R":
e; =(1,0,0,...,0,0), e, =(0,1,0,...,0,0),...,
e, =(0,0,0,...,0,1).

Indeed, (xi,X2,...,X,) = Xx1€1 + X2€3 + - - - + X,€,.

e (32).(63)(2)- ()

form a basis for M ,(R).

(2 a) =0 0) 20 0) <3 0) oo 3)

e Polynomials 1, x,x?,...,x""! form a basis for

Pp={ao+ax+--+a,1x":a €R}L

e The infinite set {1,x,x2%,...,x",...} is a basis
for P, the space of all polynomials.



Let v,vi,vo,....,vp, € R" and r, 1, ..., rx € R,
The vector equation rvi+nvo+---+rnvy =V is
equivalent to the matrix equation Ax = v, where

n
A= (vi,vo, ..., V), X =
rk
That is, A is the nx k matrix such that vectors vy, vy, ..., v,
are consecutive columns of A.
e Vectors vy,...,v, span R" if the row echelon

form of A has no zero rows (consistency).

e Vectors vy,...,vy are linearly independent if
the row echelon form of A has a leading entry in
each column (no free variables).



spanning no spanning
linear independence linear independence
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spanning no spanning
no linear independence no linear independence



Bases for R”

Let vq,vy,..., v, be vectors in R”.

Theorem 1 If kK < n then the vectors
Vi,Vo,...,V, do not span R”".

Theorem 2 If kK > n then the vectors
V1,Vo, ...,V are linearly dependent.

Theorem 3 If kK = n then the following conditions
are equivalent:

(i) {vi,v2,...,v,} is a basis for R”;

(ii) {v1,v2,...,v,} is a spanning set for R";

(iii) {vi,v2,...,v,} is a linearly independent set.



Example. Consider vectors v; = (1, —1,1),
vo = (1,0,0), v3 = (1,1,1), and v4 = (1,2,4) in R3.

Vectors v; and v, are linearly independent (as they
are not parallel), but they do not span R3,

Vectors vi, vy, v3 are linearly independent since

111 1
~101 :—| 11|:—(—2):2;A0.
10 1

Therefore {v1,vo,v3} is a basis for R3.

Vectors vy, Vo, v3,v4 span R (because v, va, v3
already span R3), but they are linearly dependent.



Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis,
then all bases for V are finite and have the same
number of elements.

Definition. The dimension of a vector space V,
denoted dim V/, is the number of elements in any of
its bases.



Examples. o dimR" = n

e Mj(R): the space of 2x2 matrices
dim MQ,Q(R) =4

o M, n(R): the space of mxn matrices
dim M, ,(R) = mn

e P,: polynomials of degree less than n
dm?P,=n

e P: the space of all polynomials

dimP = oo

e {0}: the trivial vector space

dim {0} =0



Problem. Find the dimension of the plane
x+2z=0 in R3.

The general solution of the equation x +2z =0 is

X = —2s
y=t (t,s € R)
Z =S

Thatis, (x,y,z)=(—-2s,t,s) = t(0,1,0) + s(—2,0,1).
Hence the plane is the span of vectors v; = (0, 1,0)
and vy = (—2,0,1). These vectors are linearly
independent as they are not parallel.

Thus {vi,vy} is a basis so that the dimension of
the plane is 2.



How to find a basis?

Theorem Let S be a subset of a vector space V.
Then the following conditions are equivalent:

(i) S is a linearly independent spanning set for V,
i.e., a basis;

(ii) S is a minimal spanning set for V;

(iii) S is a maximal linearly independent subset of V.
“Minimal spanning set” means “remove any element from this
set, and it is no longer a spanning set”.

“Maximal linearly independent subset” means “add any
element of V to this set, and it will become linearly
dependent”.



Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a
minimal spanning set;

(ii) any linearly independent subset of V can be
extended to a maximal linearly independent set.

Corollary 1 Any spanning set contains a basis
while any linearly independent set is contained in a
basis.

Corollary 2 A vector space is finite-dimensional if
and only if it is spanned by a finite set.



How to find a basis?

Approach 1. Get a spanning set for the vector
space, then reduce this set to a basis dropping one
vector at a time.

Proposition Let vg,vy,...,v, be a spanning set
for a vector space V. If vg is a linear combination
of vectors vi,...,v, then vq,...,v, isalso a

spanning set for V.

Indeed, if vg = vy + -+ + rvy, then
tovo + tivy 4 -+ - 4 LV =
= (tor1 + t1)v1 + - - - + (torx + tx)Vk-



How to find a basis?

Approach 2. Build a maximal linearly independent
set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If

V # {0}, pick any vector v; # 0. If vy spans V, itis a
basis. Otherwise pick any vector v, € V' that is not in the
span of vy. If v; and v, span V/, they constitute a basis.
Otherwise pick any vector vz € V' that is not in the span of
v; and v,. And so on...

Modifications. Instead of the empty set, we can start with any
linearly independent set (if we are given one). If we are given
a spanning set S, it is enough to pick new vectors only in S.

Remark. This inductive procedure works for finite-dimensional
vector spaces. There is an analogous procedure for
infinite-dimensional spaces (transfinite induction).



Vectors v; = (0,1,0) and v, = (—2,0,1) are
linearly independent.

Problem. Extend the set {vi,v,} to a basis for R3.

Our task is to find a vector v3 that is not a linear
combination of v; and vs.

Then {vi, vy, v3} will be a basis for R3.
Hint 1. vy and v, span the plane x + 2z = 0.

The vector v3 = (1,1,1) does not lie in the plane
x + 2z =0, hence it is not a linear combination of
vi and vo. Thus {vi, vy, v3} is a basis for R3.



Vectors v; = (0,1,0) and v, = (—2,0,1) are
linearly independent.

Problem. Extend the set {vi,v,} to a basis for R3.
Our task is to find a vector vz that is not a linear combination
of vi and vo. Then {vy,v,,v3} will be a basis for R3.

Hint 2. Since vectors e; = (1,0,0), e; = (0,1,0),
and e3 = (0,0,1) form a spanning set for R3, at
least one of them can be chosen as vs.

Let us check that {vi,vy,e1} and {vi,vp,e3} are
two bases for R3:

0 -2 1 0 -2 0
1 00|=1+40, |1 00|=2#0.
0 10 0 11



Problem. Find a basis for the vector space V
spanned by vectors w; = (1,1,0), wy = (0,1,1),
ws =(2,3,1), and wy = (1,1,1).

To pare this spanning set, we need to find a relation
of the form rwi+nrnwy+rsws+rnw, =0, where
ri € R are not all equal to zero. Equivalently,
1021\ (" 0
1131 :2 =10
0111/ |7 0
ry

To solve this system of linear equations for
ry, 1y, r3, ry, we apply row reduction.



1021 1021 1021

1131} =-10110] —=(0110

0111 0111 0001
1020

— (0110 (reduced row echelon form)

0001

rn+2r=0 n=-2r

n+tn=0 <= {n=-n

rp = r4:O

General solution: (r, r, r3, ry)=(—2t,—t, t,0), t € R.
Particular solution: (r, rn, r3,n) =(2,1,—1,0).



Problem. Find a basis for the vector space V
spanned by vectors w; = (1,1,0), wy = (0,1,1),
ws =(2,3,1), and wy = (1,1,1).

We have obtained that 2w; + wy — w3z = 0.
Hence any of vectors wj, w,, w3 can be dropped.
For instance, V = Span(wy, wy, wy).

Let us check whether vectors wy, wy, wy are
linearly independent:

101 101 11
111|=]110 :‘O 1‘:1750.
011 010

They arelll Thus {w;, wy, wy} is a basis for V.
Moreover, it follows that V = R3.



