MATH 323
 Linear Algebra

Lecture 11:

Wronskian.
Basis of a vector space. Dimension.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Theorem Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.

Examples of linear independence.

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

- Polynomials $1, x, x^{2}, \ldots, x^{n}, \ldots$

Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ be smooth functions on an interval $[a, b]$. The Wronskian $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ is a function on $[a, b]$ defined by

$$
W\left[f_{1}, f_{2}, \ldots, f_{n}\right](x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right| .
$$

Theorem If $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$ then the functions $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent in $C[a, b]$.

Proof: Assume that $r_{1} f_{1}(x)+r_{2} f_{2}(x)+\cdots+r_{n} f_{n}(x)=0$ for all $x \in[a, b]$, where $r_{1}, r_{2}, \ldots, r_{n}$ are constants. We have to show that $r_{i}=0,1 \leq i \leq n$.
Differentiating this identity $n-1$ times, we get $n-1$ more identities

$$
\begin{gathered}
r_{1} f_{1}^{\prime}(x)+r_{2} f_{2}^{\prime}(x)+\cdots+r_{n} f_{n}^{\prime}(x)=0, \\
\cdots \cdots \cdots \cdots \\
r_{1} f_{1}^{(n-1)}(x)+r_{2} f_{2}^{(n-1)}(x)+\cdots+r_{n} f_{n}^{(n-1)}(x)=0 .
\end{gathered}
$$

We can consider these n identities as a system of linear homogeneous equations (depending on the parameter x) in variables $r_{1}, r_{2}, \ldots, r_{n}$. Note that we need a solution common for all values of the parameter.
By construction, $W\left[f_{1}, f_{2}, \ldots, f_{n}\right](x)=\operatorname{det} A(x)$, where $A(x)$ is the coefficient matrix of the system. Since $\operatorname{det} A\left(x_{0}\right) \neq 0$, the matrix $A\left(x_{0}\right)$ is invertible. Hence $r_{1}=r_{2}=\cdots=r_{n}=0$ is the only solution of the system for $x=x_{0}$ (let alone all $x \in[a, b])$.

Theorem Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct real numbers. Then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

$$
\begin{aligned}
& W\left[e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}\right](x)=\left|\begin{array}{cccc}
e^{\lambda_{1} x} & e^{\lambda_{2} x} & \cdots & e^{\lambda_{k} x} \\
\lambda_{1} e^{\lambda_{1} x} & \lambda_{2} e^{\lambda_{2} x} & \cdots & \lambda_{k} e^{\lambda_{k} x} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{k-1} e^{\lambda_{1} x} & \lambda_{2}^{k-1} e^{\lambda_{2} x} & \cdots & \lambda_{k}^{k-1} e^{\lambda_{k} x}
\end{array}\right| \\
& \quad=e^{\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right) x}\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k}^{k-1}
\end{array}\right| \neq 0
\end{aligned}
$$

since the latter determinant is the transpose of the Vandermonde determinant.

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a basis.

Suppose that a nonempty set $S \subset V$ is a basis for V. "Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$
\begin{aligned}
& \mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=r_{1}^{\prime} \mathbf{v}_{1}+r_{2}^{\prime} \mathbf{v}_{2}+\cdots+r_{k}^{\prime} \mathbf{v}_{k} \\
& \Longrightarrow\left(r_{1}-r_{1}^{\prime}\right) \mathbf{v}_{1}+\left(r_{2}-r_{2}^{\prime}\right) \mathbf{v}_{2}+\cdots+\left(r_{k}-r_{k}^{\prime}\right) \mathbf{v}_{k}=\mathbf{0} \\
& \Longrightarrow r_{1}-r_{1}^{\prime}=r_{2}-r_{2}^{\prime}=\ldots=r_{k}-r_{k}^{\prime}=0
\end{aligned}
$$

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.
Indeed, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- Polynomials $1, x, x^{2}, \ldots, x^{n-1}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$. The vector equation $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{v}$ is equivalent to the matrix equation $A \mathbf{x}=\mathbf{v}$, where

$$
A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right), \quad \mathbf{x}=\left(\begin{array}{c}
+ \\
\vdots \\
r_{k}
\end{array}\right) .
$$

That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are consecutive columns of A.

- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span \mathbb{R}^{n} if the row echelon form of A has no zero rows (consistency).
- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).

spanning
no linear independence

no spanning linear independence

no spanning no linear independence

Bases for \mathbb{R}^{n}

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}.
Theorem 1 If $k<n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ do not span \mathbb{R}^{n}.
Theorem 2 If $k>n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent.
Theorem 3 If $k=n$ then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent (as they are not parallel), but they do not span \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent since

$$
\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\left|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=-(-2)=2 \neq 0\right.
$$

Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ span \mathbb{R}^{3} (because $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ already span \mathbb{R}^{3}), but they are linearly dependent.

Dimension

Theorem 1 Any vector space has a basis.
Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. • $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{2,2}(\mathbb{R}):$ the space of 2×2 matrices $\operatorname{dim} \mathcal{M}_{2,2}(\mathbb{R})=4$
- $\mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree less than n $\operatorname{dim} \mathcal{P}_{n}=n$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Problem. Find the dimension of the plane $x+2 z=0$ in \mathbb{R}^{3}.

The general solution of the equation $x+2 z=0$ is
$\left\{\begin{array}{l}x=-2 s \\ y=t \\ z=s\end{array}\right.$

$$
(t, s \in \mathbb{R})
$$

That is, $(x, y, z)=(-2 s, t, s)=t(0,1,0)+s(-2,0,1)$. Hence the plane is the span of vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$. These vectors are linearly independent as they are not parallel.
Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis so that the dimension of the plane is 2 .

How to find a basis?

Theorem Let S be a subset of a vector space V.
Then the following conditions are equivalent:
(i) S is a linearly independent spanning set for V, i.e., a basis;
(ii) S is a minimal spanning set for V;
(iii) S is a maximal linearly independent subset of V.
"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".
"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Corollary 1 Any spanning set contains a basis while any linearly independent set is contained in a basis.

Corollary 2 A vector space is finite-dimensional if and only if it is spanned by a finite set.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis dropping one vector at a time.

Proposition Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a spanning set for a vector space V. If \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V.

Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then

$$
\begin{gathered}
t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}= \\
=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}
\end{gathered}
$$

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If $V \neq\{\mathbf{0}\}$, pick any vector $\mathbf{v}_{1} \neq \mathbf{0}$. If \mathbf{v}_{1} spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_{2} \in V$ that is not in the span of \mathbf{v}_{1}. If \mathbf{v}_{1} and \mathbf{v}_{2} span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_{3} \in V$ that is not in the span of \mathbf{v}_{1} and \mathbf{v}_{2}. And so on...

Modifications. Instead of the empty set, we can start with any linearly independent set (if we are given one). If we are given a spanning set S, it is enough to pick new vectors only in S.
Remark. This inductive procedure works for finite-dimensional vector spaces. There is an analogous procedure for infinite-dimensional spaces (transfinite induction).

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}.
Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ will be a basis for \mathbb{R}^{3}.
Hint 1. \mathbf{v}_{1} and \mathbf{v}_{2} span the plane $x+2 z=0$.
The vector $\mathbf{v}_{3}=(1,1,1)$ does not lie in the plane $x+2 z=0$, hence it is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}. Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ will be a basis for \mathbb{R}^{3}.
Hint 2. Since vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ form a spanning set for \mathbb{R}^{3}, at least one of them can be chosen as \mathbf{v}_{3}.

Let us check that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{1}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}\right\}$ are two bases for \mathbb{R}^{3} :

$$
\left|\begin{array}{rrr}
0 & -2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=1 \neq 0, \quad\left|\begin{array}{rrr}
0 & -2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=2 \neq 0
$$

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, $\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.

To pare this spanning set, we need to find a relation of the form $r_{1} \mathbf{w}_{1}+r_{2} \mathbf{w}_{2}+r_{3} \mathbf{w}_{3}+r_{4} \mathbf{w}_{4}=\mathbf{0}$, where $r_{i} \in \mathbb{R}$ are not all equal to zero. Equivalently,

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

To solve this system of linear equations for $r_{1}, r_{2}, r_{3}, r_{4}$, we apply row reduction.

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left\{\begin{array}{l}
r_{1}+2 r_{3}=0 \\
r_{2}+r_{3}=0 \\
r_{4}=0
\end{array} \Longleftrightarrow\right. \text { (reduced row echelon form) } \\
& \Longleftrightarrow\left\{\begin{array}{l}
r_{1}=-2 r_{3} \\
r_{2}=-r_{3} \\
r_{4}=0
\end{array}\right.
\end{aligned}
$$

General solution: $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(-2 t,-t, t, 0), t \in \mathbb{R}$.
Particular solution: $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(2,1,-1,0)$.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, $\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.

We have obtained that $2 \mathbf{w}_{1}+\mathbf{w}_{2}-\mathbf{w}_{3}=\mathbf{0}$. Hence any of vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ can be dropped. For instance, $V=\operatorname{Span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right)$.
Let us check whether vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}$ are linearly independent:

$$
\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1 \neq 0 .
$$

They are!!! Thus $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right\}$ is a basis for V. Moreover, it follows that $V=\mathbb{R}^{3}$.

