MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is *uniquely represented* as a linear combination $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$.

Remark on uniqueness. Expansions $\mathbf{v} = 2\mathbf{v}_1 - \mathbf{v}_2$, $\mathbf{v} = -\mathbf{v}_2 + 2\mathbf{v}_1$, and $\mathbf{v} = 2\mathbf{v}_1 - \mathbf{v}_2 + 0\mathbf{v}_3$ are considered the same.

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

- $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices; dim $\mathcal{M}_{m,n} = mn$
- \mathcal{P}_n : polynomials of degree less than n; dim $\mathcal{P}_n = n$
- \mathcal{P} : the space of all polynomials; dim $\mathcal{P} = \infty$
- $\{\mathbf{0}\}$: the trivial vector space; dim $\{\mathbf{0}\} = 0$

How to find a basis?

Theorem Let V be a vector space. Then (i) any spanning set for V contains a basis; (ii) any linearly independent subset of V is contained in a basis.

Approach 1. Given a spanning set for the vector space, reduce this set to a basis.

Approach 2. Given a linearly independent set, extend this set to a basis.

Approach 2a. Given a spanning set S_1 and a linearly independent set S_2 , extend the set S_2 to a basis adding vectors from the set S_1 .

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

To pare this spanning set, we need to find a relation of the form $r_1\mathbf{w}_1+r_2\mathbf{w}_2+r_3\mathbf{w}_3+r_4\mathbf{w}_4 = \mathbf{0}$, where $r_i \in \mathbb{R}$ are not all equal to zero. Equivalently,

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

To solve this system of linear equations for r_1 , r_2 , r_3 , r_4 , we apply row reduction.

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\left\{ \begin{array}{c} r_{1} + 2r_{3} = 0 \\ r_{2} + r_{3} = 0 \\ r_{4} = 0 \end{array} \right. \iff \left\{ \begin{array}{c} r_{1} = -2r_{3} \\ r_{2} = -r_{3} \\ r_{4} = 0 \end{array} \right.$$

General solution: $(r_1, r_2, r_3, r_4) = (-2t, -t, t, 0), t \in \mathbb{R}$. Particular solution: $(r_1, r_2, r_3, r_4) = (2, 1, -1, 0)$. **Problem.** Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

We have obtained that $2\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{w}_3 = \mathbf{0}$. Hence any of vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ can be dropped. For instance, $V = \text{Span}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4)$.

Let us check whether vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4$ are linearly independent:

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0.$$

They are!!! Thus $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4\}$ is a basis for V. Moreover, it follows that $V = \mathbb{R}^3$.

Row space of a matrix

Definition. The **row space** of an $m \times n$ matrix A is the subspace of \mathbb{R}^n spanned by rows of A.

The dimension of the row space is called the **rank** of the matrix *A*.

Theorem 1 The rank of a matrix A is the maximal number of linearly independent rows in A.

Theorem 2 Elementary row operations do not change the row space of a matrix.

Theorem 3 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.

Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Theorem Elementary row operations do not change the row space of a matrix.

Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be the rows of A and $\mathbf{b}_1, \ldots, \mathbf{b}_m$ be the rows of B. We have to show that $\operatorname{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_m) = \operatorname{Span}(\mathbf{b}_1, \ldots, \mathbf{b}_m)$.

Observe that any row \mathbf{b}_i of B belongs to $\text{Span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$. Indeed, either $\mathbf{b}_i = \mathbf{a}_j$ for some $1 \le j \le m$, or $\mathbf{b}_i = r\mathbf{a}_i$ for some scalar $r \ne 0$, or $\mathbf{b}_i = \mathbf{a}_i + r\mathbf{a}_j$ for some $j \ne i$ and $r \in \mathbb{R}$.

It follows that
$$\operatorname{Span}(\mathbf{b}_1,\ldots,\mathbf{b}_m)\subset \operatorname{Span}(\mathbf{a}_1,\ldots,\mathbf{a}_m).$$

Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$\operatorname{Span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)\subset \operatorname{Span}(\mathbf{b}_1,\ldots,\mathbf{b}_m).$$

Problem. Find the rank of the matrix

$$egin{array}{cccc} {m A} = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 2 & 3 & 1 \ 1 & 1 & 1 \end{pmatrix} \end{array}$$

.

Elementary row operations do not change the row space. Let us convert *A* to row echelon form:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Vectors (1, 1, 0), (0, 1, 1), and (0, 0, 1) form a basis for the row space of A. Thus the rank of A is 3.

It follows that the row space of A is the entire space \mathbb{R}^3 .

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

The vector space V is the row space of a matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

According to the solution of the previous problem, vectors (1, 1, 0), (0, 1, 1), and (0, 0, 1) form a basis for V.

Column space of a matrix

Definition. The **column space** of an $m \times n$ matrix *A* is the subspace of \mathbb{R}^m spanned by columns of *A*.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^{T} .

Theorem 2 Elementary row operations do not change linear relations between columns of a matrix.

Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (however they can change the column space).

Theorem 4 If a matrix is in row echelon form, then the columns with leading entries form a basis for the column space.

Corollary For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$A=egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 2 & 3 & 1 \ 1 & 1 & 1 \end{pmatrix}$$

The column space of A coincides with the row space of A^{T} . To find a basis, we convert A^{T} to row echelon form:

$$A^{T} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Vectors (1, 0, 2, 1), (0, 1, 1, 0), and (0, 0, 0, 1) form a basis for the column space of A.

Problem. Find a basis for the column space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Alternative solution: We already know from a previous problem that the rank of A is 3. It follows that the columns of A are linearly independent. Therefore these columns form a basis for the column space.

Problem. Let V be a vector space spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$. Pare this spanning set to a basis for V.

Alternative solution: The vector space V is the column space of a matrix

$$B = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

The row echelon form of *B* is $C = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Columns of *C* with leading entries (1st, 2nd, and 4th) form a basis for the column space of *C*. It follows that the corresponding columns of *B* (i.e., 1st, 2nd, and 4th) form a basis for the column space of *B*. Thus $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4\}$ is a basis for *V*.

Nullspace of a matrix

Let $A = (a_{ij})$ be an $m \times n$ matrix. *Definition.* The **nullspace** of the matrix A, denoted N(A), is the set of all *n*-dimensional column vectors **x** such that $A\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

The nullspace N(A) is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix). Let A be an $m \times n$ matrix. Then the nullspace N(A) is the solution set of a system of linear homogeneous equations in n variables.

Theorem The nullspace N(A) is a subspace of the vector space \mathbb{R}^n .

Definition. The dimension of the nullspace N(A) is called the **nullity** of the matrix A.

Problem. Find the nullity of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}.$$

Elementary row operations do not change the nullspace. Let us convert A to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$\begin{cases} x_1 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + 3x_4 = 0 \end{cases} \iff \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \end{cases}$$

General element of N(A):

$$egin{aligned} &(x_1,x_2,x_3,x_4)=(t+2s,-2t-3s,t,s)\ &=t(1,-2,1,0)+s(2,-3,0,1),\ t,s\in\mathbb{R}. \end{aligned}$$

Vectors (1, -2, 1, 0) and (2, -3, 0, 1) form a basis for N(A). Thus the nullity of the matrix A is 2.

rank + nullity

Theorem The rank of a matrix *A* plus the nullity of *A* equals the number of columns in *A*.

Sketch of the proof: The rank of *A* equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.

The nullity of A equals the number of free variables in the corresponding system, which equals the number of columns without leading entries in the row echelon form.

Consequently, rank+nullity is the number of all columns in the matrix A.

Problem. Find the nullity of the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}.$

Alternative solution: Clearly, the rows of A are linearly independent. Therefore the rank of A is 2. Since

(rank of A) + (nullity of A) = 4,

it follows that the nullity of A is 2.

Theorem Suppose *A* and *B* are matrices of the same dimensions. Then the following conditions are equivalent:

(i) A can be obtained from B by applying elementary row operations;

(ii) A = CB for an invertible matrix C;

(iii) A and B share a row echelon form;

(iv) A and B have the same reduced row echelon form;

(v) A and B have the same row space;(vi) A and B have the same nullspace.