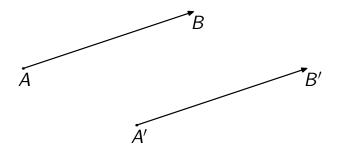
MATH 323 Linear Algebra

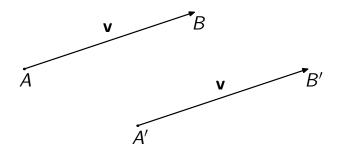
Lecture 17: Euclidean structure in \mathbb{R}^n . Orthogonality. Orthogonal complement.

Vectors: geometric approach



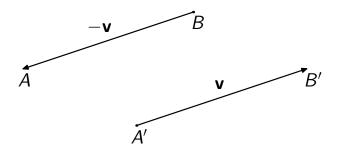
- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach



 \overrightarrow{AB} denotes the vector represented by the arrow with tip at *B* and tail at *A*. \overrightarrow{AA} is called the *zero vector* and denoted **0**.

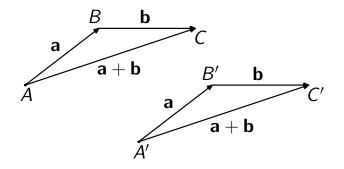
Vectors: geometric approach



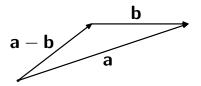
If $\mathbf{v} = \overrightarrow{AB}$ then \overrightarrow{BA} is called the *negative vector* of \mathbf{v} and denoted $-\mathbf{v}$.

Linear structure: vector addition

Given vectors \mathbf{a} and \mathbf{b} , their sum $\mathbf{a} + \mathbf{b}$ is defined by the rule $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. That is, choose points A, B, C so that $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$.

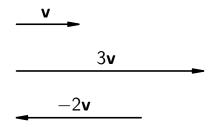


The *difference* of the two vectors is defined as $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$.



Linear structure: scalar multiplication

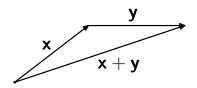
Let **v** be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of **v**. The direction of $r\mathbf{v}$ coincides with that of **v** if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and **v** are opposite.



Beyond linearity: length of a vector

The **length** (or the **magnitude**) of a vector \overrightarrow{AB} is the length of the representing segment AB. The length of a vector **v** is denoted $|\mathbf{v}|$ or $||\mathbf{v}||$.

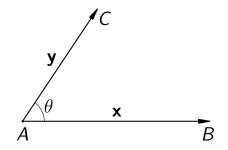
Properties of vector length: $|\mathbf{x}| \ge 0$, $|\mathbf{x}| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $|r\mathbf{x}| = |r| |\mathbf{x}|$ (homogeneity) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality)

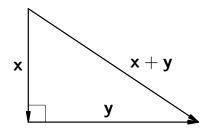


Beyond linearity: angle between vectors

Given nonzero vectors **x** and **y**, let *A*, *B*, and *C* be points such that $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{AC} = \mathbf{y}$. Then $\angle BAC$ is called the **angle** between **x** and **y**.

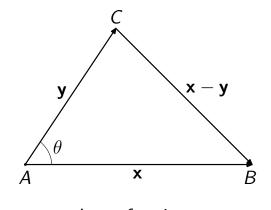
The vectors **x** and **y** are called **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.





$\begin{array}{ll} \textit{Pythagorean Theorem:} \\ \mathbf{x} \perp \mathbf{y} \implies |\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 \end{array}$

3-dimensional Pythagorean Theorem: If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then $|\mathbf{x} + \mathbf{y} + \mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 + |\mathbf{z}|^2$



Law of cosines: $|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| |\mathbf{y}| \cos \theta$

Beyond linearity: dot product

The **dot product** of vectors **x** and **y** is $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta,$

where θ is the angle between **x** and **y**.

The dot product is also called the **scalar product**. Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle \mathbf{x}, \mathbf{y} \rangle$.

The vectors **x** and **y** are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$.

Relations between lengths and dot products:

•
$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

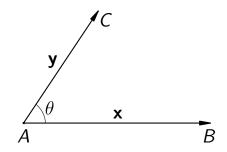
•
$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$$

•
$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2 \mathbf{x} \cdot \mathbf{y}$$

Euclidean structure

Euclidean structure includes:

- length of a vector: $|\mathbf{x}|$,
- angle between vectors: θ ,
- dot product: $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$.



Vectors: algebraic approach

An *n*-dimensional coordinate vector is an element of \mathbb{R}^n , i.e., an ordered *n*-tuple (x_1, x_2, \ldots, x_n) of real numbers.

Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition,

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

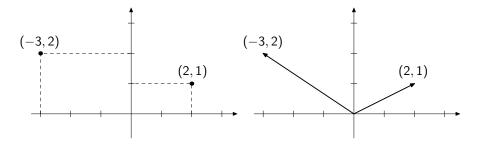
$$r\mathbf{a} = (ra_1, ra_2, \dots, ra_n),$$

$$\mathbf{0} = (0, 0, \dots, 0),$$

$$-\mathbf{b} = (-b_1, -b_2, \dots, -b_n),$$

 $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$

Cartesian coordinates: geometric meets algebraic



Cartesian coordinates allow us to identify a line, a plane, and space with \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^3 , respectively. Once we specify an *origin* O, each point A is associated a *position vector* \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O.

Length and distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$

The **distance** between vectors \mathbf{x} and \mathbf{y} (or between points with the same coordinates) is $\|\mathbf{y} - \mathbf{x}\|$.

Properties of length: $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ (homogeneity) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

Scalar product

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n = \sum_{k=1}^n x_ky_k.$

Properties of scalar product:
$$\mathbf{x} \cdot \mathbf{x} \ge 0$$
, $\mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry) $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law) $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

Relations between lengths and scalar products:

$$\begin{aligned} \|\mathbf{x}\| &= \sqrt{\mathbf{x} \cdot \mathbf{x}} \\ |\mathbf{x} \cdot \mathbf{y}| &\leq \|\mathbf{x}\| \|\mathbf{y}\| \qquad \text{(Cauchy-Schwarz inequality)} \\ \|\mathbf{x} - \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2 \, \mathbf{x} \cdot \mathbf{y} \end{aligned}$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
 for some $0 \le \theta \le \pi$.

 θ is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x** \perp **y**) if **x** \cdot **y** = 0 (i.e., if θ = 90°). **Problem.** Find the angle θ between vectors $\mathbf{x} = (2, -1)$ and $\mathbf{y} = (3, 1)$.

$$\mathbf{x} \cdot \mathbf{y} = 5, \quad \|\mathbf{x}\| = \sqrt{5}, \quad \|\mathbf{y}\| = \sqrt{10}.$$
$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \implies \theta = 45^{\circ}$$

Problem. Find the angle ϕ between vectors $\mathbf{v} = (-2, 1, 3)$ and $\mathbf{w} = (4, 5, 1)$.

 $\mathbf{v}\cdot\mathbf{w}=\mathbf{0} \implies \mathbf{v}\perp\mathbf{w} \implies \phi=\mathbf{90^{o}}$

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$. Examples in \mathbb{R}^3 . • The line x = y = 0 is orthogonal to the line y = z = 0. Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, 0, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

• The line x = y = 0 is orthogonal to the plane z = 0.

Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

• The line x = y = 0 is not orthogonal to the plane z = 1.

The vector $\mathbf{v} = (0, 0, 1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$.

• The plane z = 0 is not orthogonal to the plane y = 0. The vector $\mathbf{v} = (1, 0, 0)$ belongs to both planes and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$. **Proposition 1** If $X, Y \in \mathbb{R}^n$ are orthogonal sets then either they are disjoint or $X \cap Y = \{\mathbf{0}\}$.

 $\textit{Proof:} \quad \mathbf{v} \in X \cap Y \implies \mathbf{v} \perp \mathbf{v} \implies \mathbf{v} \cdot \mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0}.$

Proposition 2 Let V be a subspace of \mathbb{R}^n and S be a spanning set for V. Then for any $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{x} \perp S \implies \mathbf{x} \perp V.$$

Proof: Any $\mathbf{v} \in V$ is represented as $\mathbf{v} = a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k$, where $\mathbf{v}_i \in S$ and $a_i \in \mathbb{R}$. If $\mathbf{x} \perp S$ then

$$\mathbf{x} \cdot \mathbf{v} = a_1(\mathbf{x} \cdot \mathbf{v}_1) + \cdots + a_k(\mathbf{x} \cdot \mathbf{v}_k) = 0 \implies \mathbf{x} \perp \mathbf{v}_k$$

Example. The vector $\mathbf{v} = (1, 1, 1)$ is orthogonal to the plane spanned by vectors $\mathbf{w}_1 = (2, -3, 1)$ and $\mathbf{w}_2 = (0, 1, -1)$ (because $\mathbf{v} \cdot \mathbf{w}_1 = \mathbf{v} \cdot \mathbf{w}_2 = 0$).

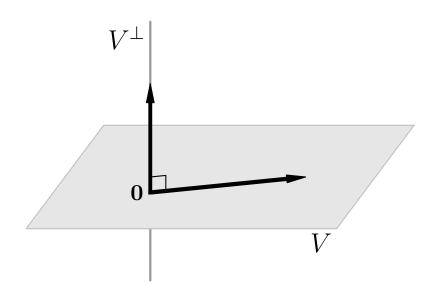
Orthogonal complement

Definition. Let $S \subset \mathbb{R}^n$. The **orthogonal** complement of *S*, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to *S*. That is, S^{\perp} is the largest subset of \mathbb{R}^n orthogonal to *S*.

Theorem 1 S^{\perp} is a subspace of \mathbb{R}^n .

Note that $S \subset (S^{\perp})^{\perp}$, hence $\operatorname{Span}(S) \subset (S^{\perp})^{\perp}$. **Theorem 2** $(S^{\perp})^{\perp} = \operatorname{Span}(S)$. In particular, for any subspace V we have $(V^{\perp})^{\perp} = V$.

Example. Consider a line $L = \{(x, 0, 0) \mid x \in \mathbb{R}\}$ and a plane $\Pi = \{(0, y, z) \mid y, z \in \mathbb{R}\}$ in \mathbb{R}^3 . Then $L^{\perp} = \Pi$ and $\Pi^{\perp} = L$.



Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let $N(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \},$ $R(A) = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$

R(A) is the range of a linear mapping $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{x}) = A\mathbf{x}$. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while R(A) is the column space of A. The row space of A is $R(A^{T})$.

The subspaces $N(A), R(A^T) \subset \mathbb{R}^n$ and $R(A), N(A^T) \subset \mathbb{R}^m$ are **fundamental subspaces** associated to the matrix A.

Theorem $N(A) = R(A^T)^{\perp}$, $N(A^T) = R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.

Proof: The equality $A\mathbf{x} = \mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A) = S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp} = \operatorname{Span}(S)^{\perp} = R(A^{\top})^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^n . Then dim $V + \dim V^{\perp} = n$.

Proof: Pick a basis $\mathbf{v}_1, \ldots, \mathbf{v}_k$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Then $V = R(A^T)$, hence $V^{\perp} = N(A)$. Consequently, dim V and dim V^{\perp} are rank and nullity of A. Therefore dim $V + \dim V^{\perp}$ equals the number of columns of A, which is n.

Problem. Let V be the plane spanned by vectors $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (0, 1, 1)$. Find V^{\perp} .

The orthogonal complement to V is the same as the orthogonal complement of the set $\{\mathbf{v}_1, \mathbf{v}_2\}$. A vector $\mathbf{u} = (x, y, z)$ belongs to the latter if and only if

$$\begin{cases} \mathbf{u} \cdot \mathbf{v}_1 = 0 \\ \mathbf{u} \cdot \mathbf{v}_2 = 0 \end{cases} \iff \begin{cases} x + y = 0 \\ y + z = 0 \end{cases}$$

Alternatively, the subspace V is the row space of the matrix

$$egin{array}{ccc} A = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}$$
 ,

hence V^{\perp} is the nullspace of A.

The general solution of the system (or, equivalently, the general element of the nullspace of A) is $(t, -t, t) = t(1, -1, 1), t \in \mathbb{R}$. Thus V^{\perp} is the straight line spanned by the vector (1, -1, 1).