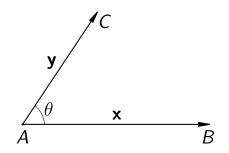
MATH 323 Linear Algebra Lecture 18: Orthogonal projection. Least squares problems.

Euclidean structure

In addition to the linear structure (addition and scaling), space \mathbb{R}^3 carries the Euclidean structure:

- length of a vector: $|\mathbf{x}|$,
- angle between vectors: θ ,
- dot product: $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$.



Length and distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$

The **distance** between vectors \mathbf{x} and \mathbf{y} (or between points with the same coordinates) is $\|\mathbf{y} - \mathbf{x}\|$.

Properties of length: $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ (homogeneity) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

Scalar product

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$.

Properties of scalar product:

 $\begin{array}{ll} \mathbf{x} \cdot \mathbf{x} \geq \mathbf{0}, & \mathbf{x} \cdot \mathbf{x} = \mathbf{0} \quad \text{only if } \mathbf{x} = \mathbf{0} & (\text{positivity}) \\ \mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} & (\text{symmetry}) \\ (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} & (\text{distributive law}) \\ (r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y}) & (\text{homogeneity}) \end{array}$

In particular, $\mathbf{x} \cdot \mathbf{y}$ is a **bilinear** function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Angle

Cauchy-Schwarz inequality: $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
 for a unique $0 \le \theta \le \pi$.

 θ is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x** \perp **y**) if **x** \cdot **y** = 0 (i.e., if $\theta = 90^{\circ}$).

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

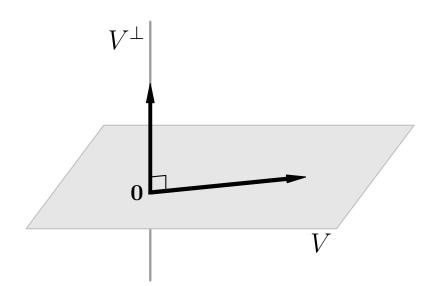
Orthogonal complement

Definition. Let $S \subset \mathbb{R}^n$ be a nonempty set. The **orthogonal complement** of S, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to S.

Theorem 1 (i) S^{\perp} is a subspace of \mathbb{R}^n . (ii) $S^{\perp} = \operatorname{Span}(S)^{\perp}$.

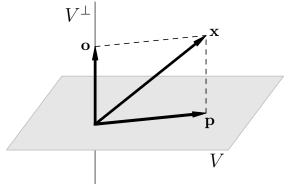
Theorem 2 If V is a subspace of \mathbb{R}^n , then (i) $(V^{\perp})^{\perp} = V$, (ii) $V \cap V^{\perp} = \{\mathbf{0}\}$, (iii) dim $V + \dim V^{\perp} = n$.

Theorem 3 If V is the row space of a matrix, then V^{\perp} is the nullspace of the same matrix.



Orthogonal projection

Theorem Let V be a subspace of \mathbb{R}^n . Then any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

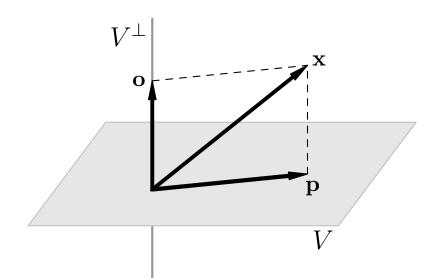


The component \mathbf{p} is called the **orthogonal projection** of the vector \mathbf{x} onto the subspace V.

Theorem Let *V* be a subspace of \mathbb{R}^n . Then any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

Proof of uniqueness: Suppose $\mathbf{x} = \mathbf{p} + \mathbf{o} = \mathbf{p}' + \mathbf{o}'$, where $\mathbf{p}, \mathbf{p}' \in V$ and $\mathbf{o}, \mathbf{o}' \in V^{\perp}$. Then $\mathbf{p} - \mathbf{p}' = \mathbf{o}' - \mathbf{o}$. Since $\mathbf{p} - \mathbf{p}' \in V$, $\mathbf{o}' - \mathbf{o} \in V^{\perp}$, and $V \cap V^{\perp} = \{\mathbf{0}\}$, it follows that $\mathbf{p} - \mathbf{p}' = \mathbf{o}' - \mathbf{o} = \mathbf{0}$. Thus $\mathbf{p}' = \mathbf{p}$ and $\mathbf{o}' = \mathbf{o}$. **Theorem** Let *V* be a subspace of \mathbb{R}^n . Then any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

Proof of existence: Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be a basis for V and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ be a basis for V^{\perp} . We claim that vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{w}_1, \ldots, \mathbf{w}_m$ are linearly independent. Indeed, assume that $r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k + s_1\mathbf{w}_1 + \cdots + s_m\mathbf{w}_m = \mathbf{0}$ for some scalars r_i, s_i . Then $\mathbf{v} + \mathbf{w} = \mathbf{0} = \mathbf{0} + \mathbf{0}$, where $\mathbf{v} = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$ is in V and $\mathbf{w} = s_1 \mathbf{w}_1 + \cdots + s_m \mathbf{w}_m$ is in V^{\perp} . By uniqueness (already proven!), $\mathbf{v} = \mathbf{w} = \mathbf{0}$. Consequently, $r_1 = \cdots = r_k = 0$ and $s_1 = \cdots = s_m = 0$. Notice that $k + m = \dim V + \dim V^{\perp} = n$. Therefore linear independence of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{w}_1, \ldots, \mathbf{w}_m$ implies that they form a basis for \mathbb{R}^n . Now for any vector $\mathbf{x} \in \mathbb{R}^n$ we have an expansion $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{w}_1 + \cdots + \beta_m \mathbf{w}_m$ = $\mathbf{p} + \mathbf{o}$, where $\mathbf{p} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k$ is in V and $\mathbf{o} = \beta_1 \mathbf{w}_1 + \cdots + \beta_m \mathbf{w}_m$ is in V^{\perp} .



Let V be a subspace of \mathbb{R}^n . Suppose **p** is the orthogonal projection of a vector $\mathbf{x} \in \mathbb{R}^n$ onto V.

Theorem $\|\mathbf{x} - \mathbf{v}\| > \|\mathbf{x} - \mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.

Remark. Thus $\|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V} \|\mathbf{x} - \mathbf{v}\|$ is the distance from the vector \mathbf{x} to the subspace V.

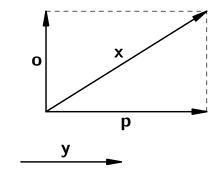
Proof: Let $\mathbf{o} = \mathbf{x} - \mathbf{p}$; then $\mathbf{o} \in V^{\perp}$. Further, let $\mathbf{o}_1 = \mathbf{x} - \mathbf{v}$, and $\mathbf{v}_1 = \mathbf{p} - \mathbf{v}$. We have $\mathbf{o}_1 = \mathbf{o} + \mathbf{v}_1$, $\mathbf{v}_1 \in V$, and $\mathbf{v}_1 \neq \mathbf{0}$. Since $\mathbf{o} \perp V$, it follows that $\mathbf{o} \cdot \mathbf{v}_1 = 0$.

$$\begin{split} \|\mathbf{o}_1\|^2 &= \mathbf{o}_1 \cdot \mathbf{o}_1 = (\mathbf{o} + \mathbf{v}_1) \cdot (\mathbf{o} + \mathbf{v}_1) \\ &= \mathbf{o} \cdot \mathbf{o} + \mathbf{v}_1 \cdot \mathbf{o} + \mathbf{o} \cdot \mathbf{v}_1 + \mathbf{v}_1 \cdot \mathbf{v}_1 \\ &= \mathbf{o} \cdot \mathbf{o} + \mathbf{v}_1 \cdot \mathbf{v}_1 = \|\mathbf{o}\|^2 + \|\mathbf{v}_1\|^2 > \|\mathbf{o}\|^2. \end{split}$$

Orthogonal projection onto a vector

Let
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
, with $\mathbf{y} \neq \mathbf{0}$.

Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} .



 $\mathbf{p} = \text{orthogonal projection of } \mathbf{x} \text{ onto } \mathbf{y}$

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$. Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} .

We have $\mathbf{p} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Then

$$\mathbf{0} = \mathbf{o} \cdot \mathbf{y} = (\mathbf{x} - \alpha \mathbf{y}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - \alpha \mathbf{y} \cdot \mathbf{y}.$$

$$\implies \alpha = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \implies \mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}$$

Problem. Find the distance from the point $\mathbf{x} = (3, 1)$ to the line spanned by $\mathbf{y} = (2, -1)$.

Consider the decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o} .

$$\mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} = \frac{5}{5} (2, -1) = (2, -1),$$

$$\mathbf{o} = \mathbf{x} - \mathbf{p} = (3, 1) - (2, -1) = (1, 2), \quad ||\mathbf{o}|| = \sqrt{5}.$$

Problem. Find the point on the line y = -x that is closest to the point (3, 4).

The required point is the projection **p** of **v** = (3, 4) on the vector **w** = (1, -1) spanning the line y = -x.

$$\mathbf{p} = rac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} = rac{-1}{2} (1, -1) = \left(-rac{1}{2}, rac{1}{2}
ight).$$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (0, 1, 1)$. (i) Find the orthogonal projection of the vector $\mathbf{x} = (4, 0, -1)$ onto the plane Π . (ii) Find the distance from \mathbf{x} to Π .

We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.

We have $\mathbf{p} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ for some $\alpha, \beta \in \mathbb{R}$. Then $\mathbf{o} = \mathbf{x} - \mathbf{p} = \mathbf{x} - \alpha \mathbf{v}_1 - \beta \mathbf{v}_2$.

$$\begin{cases} \mathbf{o} \cdot \mathbf{v}_1 = \mathbf{0} \\ \mathbf{o} \cdot \mathbf{v}_2 = \mathbf{0} \end{cases} \iff \begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

$$\mathbf{x}=(4,0,-1)$$
, $\mathbf{v}_1=(1,1,0)$, $\mathbf{v}_2=(0,1,1)$

$$\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$
$$\iff \begin{cases} 2\alpha + \beta = 4 \\ \alpha + 2\beta = -1 \end{cases} \iff \begin{cases} \alpha = 3 \\ \beta = -2 \end{cases}$$

$$\mathbf{p} = 3\mathbf{v}_1 - 2\mathbf{v}_2 = (3, 1, -2)$$

 $\mathbf{o} = \mathbf{x} - \mathbf{p} = (1, -1, 1)$
 $\|\mathbf{o}\| = \sqrt{3}$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (0, 1, 1)$. (i) Find the orthogonal projection of the vector $\mathbf{x} = (4, 0, -1)$ onto the plane Π . (ii) Find the distance from \mathbf{x} to Π .

Alternative solution: We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.

Notice that **o** is the orthogonal projection of **x** onto the orthogonal complement Π^{\perp} . In the previous lecture, we found that Π^{\perp} is the line spanned by the vector $\mathbf{y} = (1, -1, 1)$. It follows that

$$\mathbf{o} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} = \frac{3}{3} (1, -1, 1) = (1, -1, 1).$$

Then $\mathbf{p} = \mathbf{x} - \mathbf{o} = (4, 0, -1) - (1, -1, 1) = (3, 1, -2)$ and $\|\mathbf{o}\| = \sqrt{3}$.

Overdetermined system of linear equations:

$$\begin{cases} x + 2y = 3 \\ 3x + 2y = 5 \\ x + y = 2.09 \end{cases} \iff \begin{cases} x + 2y = 3 \\ -4y = -4 \\ -y = -0.91 \end{cases}$$

No solution: inconsistent system

Assume that a solution (x_0, y_0) does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of (x_0, y_0) .

One approach is the **least squares fit**. Namely, we look for a pair (x, y) that minimizes the sum $(x + 2y - 3)^2 + (3x + 2y - 5)^2 + (x + y - 2.09)^2$.

Least squares solution

System of linear equations:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \dots \dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases} \iff A\mathbf{x} = \mathbf{b}$$
For any $\mathbf{x} \in \mathbb{R}^n$ define a **residual** $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$.
The **least squares solution x** to the system is the one that minimizes $||r(\mathbf{x})||$ (or, equivalently, $||r(\mathbf{x})||^2$).

$$\|r(\mathbf{x})\|^2 = \sum_{i=1}^m (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$.

Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$ if and only if it is a solution of the associated **normal system** $A^T A \mathbf{x} = A^T \mathbf{b}$.

Proof: $A\mathbf{x}$ is an arbitrary vector in R(A), the column space of A. Hence the length of $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is minimal if $A\mathbf{x}$ is the orthogonal projection of \mathbf{b} onto R(A). That is, if $r(\mathbf{x})$ is orthogonal to R(A).

We know that $R(A)^{\perp} = N(A^{T})$, the nullspace of the transpose matrix. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if

$$A^T r(\hat{\mathbf{x}}) = \mathbf{0} \iff A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}.$$

Problem. Find the least squares solution to

$$\begin{cases} x + 2y = 3\\ 3x + 2y = 5\\ x + y = 2.09 \end{cases}$$
$$\begin{pmatrix} 1 & 2\\ 3 & 2\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 3\\ 5\\ 2.09 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 3 & 1\\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2\\ 3 & 2\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1\\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3\\ 5\\ 2.09 \end{pmatrix}$$
$$\begin{pmatrix} 11 & 9\\ 9 & 9 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 20.09\\ 18.09 \end{pmatrix} \iff \begin{cases} x = 1\\ y = 1.01 \end{cases}$$