MATH 323
 Linear Algebra

Lecture 19:
Least squares problems (continued). Norms and inner products.

Orthogonal projection

Let V be a subspace of \mathbb{R}^{n}. Then any vector $\mathbf{x} \in \mathbb{R}^{n}$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$. The component \mathbf{p} is called the orthogonal projection of the vector \mathbf{x} onto the subspace V.

The projection \mathbf{p} is closer to \mathbf{x} than any other vector in V. Hence the distance from \mathbf{x} to V is $\|\mathbf{x}-\mathbf{p}\|=\|\mathbf{o}\|$.

Least squares solution

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$$
\Longleftrightarrow A \mathbf{x}=\mathbf{b}
$$

For any $\mathbf{x} \in \mathbb{R}^{n}$ define a residual $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$.
The least squares solution x to the system is the one that minimizes $\|r(\mathbf{x})\|$ (or, equivalently, $\|r(\mathbf{x})\|^{2}$).

$$
\|r(\mathbf{x})\|^{2}=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^{m}$.
Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A \mathbf{x}=\mathbf{b}$ if and only if it is a solution of the associated normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
Proof: $A \mathbf{x}$ is an arbitrary vector in $R(A)$, the column space of A. Hence the length of $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is minimal if $A \mathbf{x}$ is the orthogonal projection of \mathbf{b} onto $R(A)$. That is, if $r(\mathbf{x})$ is orthogonal to $R(A)$.
We know that $\{\text { row space }\}^{\perp}=\{$ nullspace $\}$ for any matrix. In particular, $R(A)^{\perp}=N\left(A^{T}\right)$, the nullspace of the transpose matrix of A. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if

$$
A^{T} r(\hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

Corollary The normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is always consistent.

Problem. Find the constant function that is the least square fit to the following data

x	0	1	2	3
$f(x)$	1	0	1	2

$f(x)=c \Longrightarrow\left\{\begin{array}{l}c=1 \\ c=0 \\ c=1 \\ c=2\end{array} \Longrightarrow\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)(c)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)\right.$
$(1,1,1,1)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)(c)=(1,1,1,1)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)$
$c=\frac{1}{4}(1+0+1+2)=1 \quad$ (mean arithmetic value)

Problem. Find the linear polynomial that is the least square fit to the following data

$$
\begin{aligned}
& \begin{array}{c||c|c|c|c}
x & 0 & 1 & 2 & 3 \\
\hline f(x) & 1 & 0 & 1 & 2
\end{array} \\
& f(x)=c_{1}+c_{2} x \Longrightarrow\left\{\begin{array}{l}
c_{1}=1 \\
c_{1}+c_{2}=0 \\
c_{1}+2 c_{2}=1 \\
c_{1}+3 c_{2}=2
\end{array} \Longrightarrow\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right)\right. \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right) \\
& \left(\begin{array}{cc}
4 & 6 \\
6 & 14
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{4}{8} \Longleftrightarrow\left\{\begin{array}{l}
c_{1}=0.4 \\
c_{2}=0.4
\end{array}\right.
\end{aligned}
$$

Problem. Find the quadratic polynomial that is the least square fit to the following data

x	0	1	2	3
$f(x)$	1	0	1	2

$f(x)=c_{1}+c_{2} x+c_{3} x^{2}$
$\Longrightarrow\left\{\begin{array}{l}c_{1}=1 \\ c_{1}+c_{2}+c_{3}=0 \\ c_{1}+2 c_{2}+4 c_{3}=1 \\ c_{1}+3 c_{2}+9 c_{3}=2\end{array} \Longrightarrow\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)\right.$
$\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)$
$\left(\begin{array}{ccc}4 & 6 & 14 \\ 6 & 14 & 36 \\ 14 & 36 & 98\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{c}4 \\ 8 \\ 22\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}c_{1}=0.9 \\ c_{2}=-1.1 \\ c_{3}=0.5\end{array}\right.$

Norm

The notion of norm generalizes the notion of length of a vector in \mathbb{R}^{n}.
Definition. Let V be a vector space. A function $\alpha: V \rightarrow \mathbb{R}$ is called a norm on V if it has the following properties:
(i) $\alpha(\mathbf{x}) \geq 0, \alpha(\mathbf{x})=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\alpha(r \mathbf{x})=|r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R} \quad$ (homogeneity)
(iii) $\alpha(\mathbf{x}+\mathbf{y}) \leq \alpha(\mathbf{x})+\alpha(\mathbf{y}) \quad$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_{1}$ and $\|\mathbf{x}\|_{2}$.

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$.

Positivity and homogeneity are obvious. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$. Then $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.

$$
\begin{aligned}
\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right| & \leq \max _{j}\left|x_{j}\right|+\max _{j}\left|y_{j}\right| \\
\Longrightarrow \max _{j}\left|x_{j}+y_{j}\right| & \leq \max _{j}\left|x_{j}\right|+\max _{j}\left|y_{j}\right| \\
\Longrightarrow\|\mathbf{x}+\mathbf{y}\|_{\infty} & \leq\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty} .
\end{aligned}
$$

- $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$.

Positivity and homogeneity are obvious.
The triangle inequality: $\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|$

$$
\Longrightarrow \quad \sum_{j}\left|x_{j}+y_{j}\right| \leq \sum_{j}\left|x_{j}\right|+\sum_{j}\left|y_{j}\right|
$$

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}, \quad p>0$.

Remark. $\|\mathbf{x}\|_{2}=$ Euclidean length of \mathbf{x}.
Theorem $\|\mathbf{x}\|_{p}$ is a norm on \mathbb{R}^{n} for any $p \geq 1$.
Positivity and homogeneity are still obvious (and hold for any $p>0$). The triangle inequality for $p \geq 1$ is known as the Minkowski inequality:
$\left(\left|x_{1}+y_{1}\right|^{p}+\left|x_{2}+y_{2}\right|^{p}+\cdots+\left|x_{n}+y_{n}\right|^{p}\right)^{1 / p} \leq$

$$
\leq\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}+\left(\left|y_{1}\right|^{p}+\cdots+\left|y_{n}\right|^{p}\right)^{1 / p}
$$

Normed vector space

Definition. A normed vector space is a vector space endowed with a norm.
The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$.

Then we say that a sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Also, we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_{0} if $\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is small.

Unit circle: $\|x\|=1$

$$
\begin{aligned}
\|\mathbf{x}\| & =\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} & & \text { black } \\
\|\mathbf{x}\| & =\left(\frac{1}{2} x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} & & \text { green } \\
\|\mathbf{x}\| & =\left|x_{1}\right|+\left|x_{2}\right| & & \text { blue } \\
\|\mathbf{x}\| & =\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right) & & \text { red }
\end{aligned}
$$

Examples. $\quad V=C[a, b], \quad f:[a, b] \rightarrow \mathbb{R}$.

- $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$.
- $\|f\|_{1}=\int_{a}^{b}|f(x)| d x$.
- $\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}, p>0$.

Theorem $\|f\|_{p}$ is a norm on $C[a, b]$ for any $p \geq 1$.

Inner product

The notion of inner product generalizes the notion of dot product of vectors in \mathbb{R}^{n}.
Definition. Let V be a vector space. A function $\beta: V \times V \rightarrow \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle$, is called an inner product on V if it is positive, symmetric, and bilinear. That is, if
(i) $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0,\langle\mathbf{x}, \mathbf{x}\rangle=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
(symmetry)
(iii) $\langle r \mathbf{x}, \mathbf{y}\rangle=r\langle\mathbf{x}, \mathbf{y}\rangle$
(homogeneity)
(iv) $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle \quad$ (distributive law)

An inner product space is a vector space endowed with an inner product.

Examples. $\quad V=\mathbb{R}^{n}$.

- $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
- $\langle\mathbf{x}, \mathbf{y}\rangle=d_{1} x_{1} y_{1}+d_{2} x_{2} y_{2}+\cdots+d_{n} x_{n} y_{n}$, where $d_{1}, d_{2}, \ldots, d_{n}>0$.
- $\langle\mathbf{x}, \mathbf{y}\rangle=(D \mathbf{x}) \cdot(D \mathbf{y})$,
where D is an invertible $n \times n$ matrix.
Remarks. (a) Invertibility of D is necessary to show that $\langle\mathbf{x}, \mathbf{x}\rangle=0 \Longrightarrow \mathbf{x}=\mathbf{0}$.
(b) The second example is a particular case of the third one when $D=\operatorname{diag}\left(d_{1}^{1 / 2}, d_{2}^{1 / 2}, \ldots, d_{n}^{1 / 2}\right)$.

