MATH 323 Linear Algebra

Lecture 21: The Gram-Schmidt orthogonalization process.

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

Definition. Nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an **orthogonal set** if they are orthogonal to each other: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|\mathbf{v}_i\| = 1$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called an **orthonormal set**.

Theorem Any orthogonal set is linearly independent.

Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component **p** is called the **orthogonal projection** of the vector **x** onto the subspace V_0 .

The projection **p** is closer to **x** than any other vector in V_0 . Hence the distance from **x** to V_0 is $||\mathbf{x} - \mathbf{p}|| = ||\mathbf{o}||$. Let V be an inner product space. Let **p** be the orthogonal projection of a vector $\mathbf{x} \in V$ onto a finite-dimensional subspace V_0 .

If V_0 is a one-dimensional subspace spanned by a vector \mathbf{v} then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$.

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V_0 then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$ Indeed, $\langle \mathbf{p}, \mathbf{v}_i \rangle = \sum_{j=1}^n \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle} \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \frac{\langle \mathbf{x}, \mathbf{v}_i \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle$ $\implies \langle \mathbf{x} - \mathbf{p}, \mathbf{v}_i \rangle = 0 \implies \mathbf{x} - \mathbf{p} \perp \mathbf{v}_i \implies \mathbf{x} - \mathbf{p} \perp V_0.$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.

Properties of the Gram-Schmidt process:

•
$$\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), \ 1 \le k \le n;$$

• the span of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$ is the same as the span of $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for an inner product space V. Let

 $v_1 = x_1, \quad w_1 = \frac{v_1}{\|v_1\|},$ $\mathbf{v}_2 = \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{w}_1
angle \mathbf{w}_1$, $\mathbf{w}_2 = rac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{v}_3 = \mathbf{x}_3 - \langle \mathbf{x}_3, \mathbf{w}_1
angle \mathbf{w}_1 - \langle \mathbf{x}_3, \mathbf{w}_2
angle \mathbf{w}_2$, $\mathbf{w}_3 = rac{\mathbf{v}_3}{\|\mathbf{v}_3\|}$, $\mathbf{v}_n = \mathbf{x}_n - \langle \mathbf{x}_n, \mathbf{w}_1 \rangle \mathbf{w}_1 - \cdots - \langle \mathbf{x}_n, \mathbf{w}_{n-1} \rangle \mathbf{w}_{n-1},$ $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}.$ Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Problem. Let V₀ be a subspace of dimension k in Rⁿ. Let x₁, x₂, ..., x_k be a basis for V₀. (i) Find an orthogonal basis for V₀. (ii) Extend it to an orthogonal basis for Rⁿ.

Approach 1. Extend $\mathbf{x}_1, \ldots, \mathbf{x}_k$ to a basis $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ for \mathbb{R}^n . Then apply the Gram-Schmidt process to the extended basis. We shall obtain an orthogonal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ for \mathbb{R}^n . By construction, $\operatorname{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k) = \operatorname{Span}(\mathbf{x}_1, \ldots, \mathbf{x}_k) = V_0$. It follows that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a basis for V_0 . Clearly, it is orthogonal.

Approach 2. First apply the Gram-Schmidt process to $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and obtain an orthogonal basis $\mathbf{v}_1, \ldots, \mathbf{v}_k$ for V_0 . Secondly, find a basis $\mathbf{y}_1, \ldots, \mathbf{y}_m$ for the orthogonal complement V_0^{\perp} and apply the Gram-Schmidt process to it obtaining an orthogonal basis $\mathbf{u}_1, \ldots, \mathbf{u}_m$ for V_0^{\perp} . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_m$ is an orthogonal basis for \mathbb{R}^n . Problem. Let Π be the plane in R³ spanned by vectors x₁ = (1, 2, 2) and x₂ = (-1, 0, 2).
(i) Find an orthonormal basis for Π.
(ii) Extend it to an orthonormal basis for R³.

 $\mathbf{x}_1, \mathbf{x}_2$ is a basis for the plane Π . We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors $\mathbf{x}_1, \mathbf{x}_2$, and $\mathbf{x}_3 = (0, 0, 1)$ form a basis for \mathbb{R}^3 because

$$\begin{vmatrix} 1 & 2 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0$$

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_1 = (1, 2, 2), \mathbf{x}_2 = (-1, 0, 2), \mathbf{x}_3 = (0, 0, 1)$: $\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2).$ $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1, 0, 2) - \frac{3}{9} (1, 2, 2)$ = (-4/3, -2/3, 4/3). $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2$ $= (0,0,1) - \frac{2}{9}(1,2,2) - \frac{4/3}{4}(-4/3,-2/3,4/3)$ = (2/9, -2/9, 1/9).

Now $\mathbf{v}_1 = (1, 2, 2)$, $\mathbf{v}_2 = (-4/3, -2/3, 4/3)$, $\mathbf{v}_3 = (2/9, -2/9, 1/9)$ is an orthogonal basis for \mathbb{R}^3 while $\mathbf{v}_1, \mathbf{v}_2$ is an orthogonal basis for Π . It remains to normalize these vectors.

 $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for Π . $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ is an orthonormal basis for \mathbb{R}^3 . **Problem.** Find the distance from the point $\mathbf{y} = (0, 0, 0, 1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1, -1, 1, -1)$, $\mathbf{x}_2 = (1, 1, 3, -1)$, and $\mathbf{x}_3 = (-3, 7, 1, 3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ to obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V:

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \frac{\langle \mathbf{y}, \mathbf{v}_3 \rangle}{\langle \mathbf{v}_3, \mathbf{v}_3 \rangle} \mathbf{v}_3.$$

Then the distance from **y** to V equals $\|\mathbf{y} - \mathbf{p}\|$.

Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. By construction, $\mathbf{v}_4 = \mathbf{y} - \mathbf{p}$ so that the desired distance will be $\|\mathbf{v}_4\|$.

$$\begin{aligned} \mathbf{x}_{1} &= (1, -1, 1, -1), \ \mathbf{x}_{2} &= (1, 1, 3, -1), \\ \mathbf{x}_{3} &= (-3, 7, 1, 3), \ \mathbf{y} &= (0, 0, 0, 1). \end{aligned}$$
$$\mathbf{v}_{1} &= \mathbf{x}_{1} &= (1, -1, 1, -1), \\ \mathbf{v}_{2} &= \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} &= (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) \\ &= (0, 2, 2, 0), \\ \mathbf{v}_{3} &= \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2} \\ &= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) \\ &= (0, 0, 0, 0). \end{aligned}$$

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . V is a plane, not a 3-dimensional subspace. To fix things, it is enough to drop \mathbf{x}_3 , i.e., we should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\begin{split} \tilde{\mathbf{v}}_3 &= \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= (1/4, -1/4, 1/4, 3/4). \\ \tilde{\mathbf{v}}_3 &| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. \end{split}$$

Problem. Find the distance from the point $\mathbf{z} = (0, 0, 1, 0)$ to the plane Π that passes through the point $\mathbf{x}_0 = (1, 0, 0, 0)$ and is parallel to the vectors $\mathbf{v}_1 = (1, -1, 1, -1)$ and $\mathbf{v}_2 = (0, 2, 2, 0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\Pi = \Pi_0 + \mathbf{x}_0$.

Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z} - \mathbf{x}_0$ to the plane $\Pi - \mathbf{x}_0 = \Pi_0$.

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{z} - \mathbf{x}_0$. This will yield an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. The desired distance will be $\|\mathbf{w}_3\|$.

$${f v}_1=(1,-1,1,-1)$$
, ${f v}_2=(0,2,2,0)$, ${f z}-{f x}_0=(-1,0,1,0)$.

$$\begin{split} \mathbf{w}_1 &= \mathbf{v}_1 = (1, -1, 1, -1), \\ \mathbf{w}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \text{ as } \mathbf{v}_2 \perp \mathbf{v}_1. \\ \mathbf{w}_3 &= (\mathbf{z} - \mathbf{x}_0) - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \\ &= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \\ &= (-1, -1/2, 1/2, 0). \\ |\mathbf{w}_3| &= \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| (-2, -1, 1, 0) \right| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}. \end{split}$$

Problem. Approximate the function $f(x) = e^x$ on the interval [-1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$\|f-p\|_\infty=\max_{|x|\leq 1}|f(x)-p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a *"least squares"* approximation that minimizes the integral norm

$$||f - p||_2 = \left(\int_{-1}^1 |f(x) - p(x)|^2 dx\right)^{1/2}$$

The norm $\|\cdot\|_2$ is induced by the inner product $\langle g, h \rangle = \int_{-1}^1 g(x)h(x) \, dx.$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of polynomials of degree at most 2.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x).$$