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Linear Algebra

Lecture 21:
The Gram-Schmidt orthogonalization process.



Orthogonal sets

Let V be an inner product space with an inner
product 〈·, ·〉 and the induced norm ‖v‖ =

√

〈v, v〉.
Definition. Nonzero vectors v1, v2, . . . , vk ∈ V

form an orthogonal set if they are orthogonal to
each other: 〈vi , vj〉 = 0 for i 6= j .

If, in addition, all vectors are of unit norm,
‖vi‖ = 1, then v1, v2, . . . , vk is called an
orthonormal set.

Theorem Any orthogonal set is linearly
independent.



Orthogonal projection

Theorem Let V be an inner product space and V0 be a
finite-dimensional subspace of V . Then any vector x ∈ V is
uniquely represented as x = p+ o, where p ∈ V0 and
o ⊥ V0.

The component p is called the orthogonal projection of the
vector x onto the subspace V0.

V0

o

p

x

The projection p is closer to x than any other vector in V0.
Hence the distance from x to V0 is ‖x− p‖ = ‖o‖.



Let V be an inner product space. Let p be the

orthogonal projection of a vector x ∈ V onto a
finite-dimensional subspace V0.

If V0 is a one-dimensional subspace spanned by a

vector v then p =
〈x, v〉
〈v, v〉v.

If v1, v2, . . . , vn is an orthogonal basis for V0 then

p =
〈x, v1〉
〈v1, v1〉

v1 +
〈x, v2〉
〈v2, v2〉

v2 + · · ·+ 〈x, vn〉
〈vn, vn〉

vn.

Indeed, 〈p, vi〉 =
n

∑

j=1

〈x, vj〉
〈vj , vj〉

〈vj , vi〉 =
〈x, vi〉
〈vi , vi〉

〈vi , vi〉 = 〈x, vi〉

=⇒ 〈x−p, vi〉 = 0 =⇒ x−p ⊥ vi =⇒ x−p ⊥ V0.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose x1, x2, . . . , xn is a basis for V . Let

v1 = x1,

v2 = x2 −
〈x2, v1〉
〈v1, v1〉

v1,

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn −
〈xn, v1〉
〈v1, v1〉

v1 − · · · − 〈xn, vn−1〉
〈vn−1, vn−1〉

vn−1.

Then v1, v2, . . . , vn is an orthogonal basis for V .



Span(v1,v2) = Span(x1,x2)

v3

p3

x3



Any basis

x1, x2, . . . , xn
−→ Orthogonal basis

v1, v2, . . . , vn

Properties of the Gram-Schmidt process:

• vk = xk − (α1x1 + · · ·+ αk−1xk−1), 1 ≤ k ≤ n;

• the span of v1, . . . , vk−1 is the same as the span
of x1, . . . , xk−1;

• vk is orthogonal to x1, . . . , xk−1;

• vk = xk − pk , where pk is the orthogonal
projection of the vector xk on the subspace spanned

by x1, . . . , xk−1;

• ‖vk‖ is the distance from xk to the subspace
spanned by x1, . . . , xk−1.



Normalization

Let V be a vector space with an inner product.
Suppose v1, v2, . . . , vn is an orthogonal basis for V .

Let w1 =
v1

‖v1‖
, w2 =

v2
‖v2‖

,. . . , wn =
vn

‖vn‖
.

Then w1,w2, . . . ,wn is an orthonormal basis for V .

Theorem Any finite-dimensional vector space with

an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an

orthonormal basis.



Orthogonalization /Normalization

An alternative form of the Gram-Schmidt process combines
orthogonalization with normalization.

Suppose x1, x2, . . . , xn is a basis for an inner

product space V . Let

v1 = x1, w1 =
v1

‖v1‖ ,

v2 = x2 − 〈x2,w1〉w1, w2 =
v2
‖v2‖,

v3 = x3 − 〈x3,w1〉w1 − 〈x3,w2〉w2, w3 =
v3
‖v3‖,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn − 〈xn,w1〉w1 − · · · − 〈xn,wn−1〉wn−1,

wn =
vn

‖vn‖ .

Then w1,w2, . . . ,wn is an orthonormal basis for V .



Problem. Let V0 be a subspace of dimension k in

R
n. Let x1, x2, . . . , xk be a basis for V0.
(i) Find an orthogonal basis for V0.

(ii) Extend it to an orthogonal basis for Rn.

Approach 1. Extend x1, . . . , xk to a basis x1, x2, . . . , xn for
R

n. Then apply the Gram-Schmidt process to the extended
basis. We shall obtain an orthogonal basis v1, . . . , vn for Rn.
By construction, Span(v1, . . . , vk) = Span(x1, . . . , xk) = V0.
It follows that v1, . . . , vk is a basis for V0. Clearly, it is
orthogonal.

Approach 2. First apply the Gram-Schmidt process to
x1, . . . , xk and obtain an orthogonal basis v1, . . . , vk for V0.
Secondly, find a basis y1, . . . , ym for the orthogonal
complement V⊥

0
and apply the Gram-Schmidt process to it

obtaining an orthogonal basis u1, . . . , um for V⊥

0
. Then

v1, . . . , vk , u1, . . . , um is an orthogonal basis for Rn.



Problem. Let Π be the plane in R
3 spanned by

vectors x1 = (1, 2, 2) and x2 = (−1, 0, 2).
(i) Find an orthonormal basis for Π.

(ii) Extend it to an orthonormal basis for R3.

x1, x2 is a basis for the plane Π. We can extend it

to a basis for R3 by adding one vector from the
standard basis. For instance, vectors x1, x2, and
x3 = (0, 0, 1) form a basis for R3 because
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Using the Gram-Schmidt process, we orthogonalize

the basis x1 = (1, 2, 2), x2 = (−1, 0, 2), x3 = (0, 0, 1):

v1 = x1 = (1, 2, 2),

v2 = x2 −
〈x2, v1〉
〈v1, v1〉

v1 = (−1, 0, 2)− 3

9
(1, 2, 2)

= (−4/3,−2/3, 4/3),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (0, 0, 1)− 2

9
(1, 2, 2)− 4/3

4
(−4/3,−2/3, 4/3)

= (2/9,−2/9, 1/9).



Now v1 = (1, 2, 2), v2 = (−4/3,−2/3, 4/3),

v3 = (2/9,−2/9, 1/9) is an orthogonal basis for R3

while v1, v2 is an orthogonal basis for Π. It
remains to normalize these vectors.

〈v1, v1〉 = 9 =⇒ ‖v1‖ = 3

〈v2, v2〉 = 4 =⇒ ‖v2‖ = 2

〈v3, v3〉 = 1/9 =⇒ ‖v3‖ = 1/3

w1 = v1/‖v1‖ = (1/3, 2/3, 2/3) = 1

3
(1, 2, 2),

w2 = v2/‖v2‖ = (−2/3,−1/3, 2/3) = 1

3
(−2,−1, 2),

w3 = v3/‖v3‖ = (2/3,−2/3, 1/3) = 1

3
(2,−2, 1).

w1,w2 is an orthonormal basis for Π.

w1,w2,w3 is an orthonormal basis for R3.



Problem. Find the distance from the point

y = (0, 0, 0, 1) to the subspace V ⊂ R
4 spanned

by vectors x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),

and x3 = (−3, 7, 1, 3).

First we apply the Gram-Schmidt process to vectors x1, x2, x3
to obtain an orthogonal basis v1, v2, v3 for the subspace V .
Next we compute the orthogonal projection p of the vector y
onto V :

p =
〈y, v1〉
〈v1, v1〉

v1 +
〈y, v2〉
〈v2, v2〉

v2 +
〈y, v3〉
〈v3, v3〉

v3.

Then the distance from y to V equals ‖y − p‖.

Alternatively, we can apply the Gram-Schmidt process to
vectors x1, x2, x3, y. We should obtain an orthogonal system
v1, v2, v3, v4. By construction, v4 = y− p so that the desired
distance will be ‖v4‖.



x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
x3 = (−3, 7, 1, 3), y = (0, 0, 0, 1).

v1 = x1 = (1,−1, 1,−1),

v2 = x2−
〈x2, v1〉
〈v1, v1〉

v1 = (1, 1, 3,−1)− 4

4
(1,−1, 1,−1)

= (0, 2, 2, 0),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (−3, 7, 1, 3)− −12

4
(1,−1, 1,−1)− 16

8
(0, 2, 2, 0)

= (0, 0, 0, 0).



The Gram-Schmidt process can be used to check

linear independence of vectors! It failed because

the vector x3 is a linear combination of x1 and x2.
V is a plane, not a 3-dimensional subspace. To fix

things, it is enough to drop x3, i.e., we should
orthogonalize vectors x1, x2, y.

ṽ3 = y − 〈y, v1〉
〈v1, v1〉

v1 −
〈y, v2〉
〈v2, v2〉

v2

= (0, 0, 0, 1)− −1

4
(1,−1, 1,−1)− 0

8
(0, 2, 2, 0)

= (1/4,−1/4, 1/4, 3/4).

|ṽ3| =
∣
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4
|(1,−1, 1, 3)| =

√
12

4
=

√
3

2
.



Problem. Find the distance from the point
z = (0, 0, 1, 0) to the plane Π that passes through

the point x0 = (1, 0, 0, 0) and is parallel to the
vectors v1 = (1,−1, 1,−1) and v2 = (0, 2, 2, 0).

The plane Π is not a subspace of R4 as it does not

pass through the origin. Let Π0 = Span(v1, v2).
Then Π = Π0 + x0.

Hence the distance from the point z to the plane Π
is the same as the distance from the point z− x0
to the plane Π− x0 = Π0.

We shall apply the Gram-Schmidt process to vectors
v1, v2, z− x0. This will yield an orthogonal system

w1,w2,w3. The desired distance will be ‖w3‖.



v1 = (1,−1, 1,−1), v2 = (0, 2, 2, 0), z− x0 = (−1, 0, 1, 0).

w1 = v1 = (1,−1, 1,−1),

w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1 = v2 = (0, 2, 2, 0) as v2 ⊥ v1.

w3 = (z− x0)−
〈z− x0,w1〉
〈w1,w1〉

w1 −
〈z− x0,w2〉
〈w2,w2〉

w2

= (−1, 0, 1, 0)− 0

4
(1,−1, 1,−1)− 2

8
(0, 2, 2, 0)

= (−1,−1/2, 1/2, 0).

|w3| =
∣

∣

∣
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)
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2
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√
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.



Problem. Approximate the function f (x) = ex

on the interval [−1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform

norm:
‖f − p‖∞ = max

|x |≤1

|f (x)− p(x)|.

However there is no analytic way to find such a
polynomial. Instead, one can find a “least squares”

approximation that minimizes the integral norm

‖f − p‖2 =
(
∫

1

−1

|f (x)− p(x)|2 dx
)1/2

.



The norm ‖ · ‖2 is induced by the inner product

〈g , h〉 =
∫

1

−1

g(x)h(x) dx .

Therefore ‖f − p‖2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3 of polynomials of degree at most 2.

We should apply the Gram-Schmidt process to the
polynomials 1, x , x2, which form a basis for P3.

This would yield an orthogonal basis p0, p1, p2.
Then

p(x) =
〈f , p0〉
〈p0, p0〉

p0(x) +
〈f , p1〉
〈p1, p1〉

p1(x) +
〈f , p2〉
〈p2, p2〉

p2(x).


