MATH 323
 Linear Algebra

Lecture 23:
 Diagonalization.
 Review for Test 2.

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \rightarrow V$ be a linear operator. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$
L\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow A=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

How to find a basis of eigenvectors

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are all eigenvalues of a linear operator $L: V \rightarrow V$. For any $1 \leq i \leq k$, let S_{i} be a basis for the eigenspace associated to the eigenvalue λ_{i}. Then these bases are disjoint and the union $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a linearly independent set.

Moreover, if the vector space V admits a basis consisting of eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda /)=0$ has n distinct roots. Then (i) there is a basis for \mathbb{R}^{n} consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as
$A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$. - Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Notice that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Example. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace for 0 is one-dimensional; it has a basis
$S_{1}=\left\{\mathbf{v}_{1}\right\}$, where $\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace for 2 is two-dimensional; it has a basis
$S_{2}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{2}=(1,1,0), \mathbf{v}_{3}=(-1,0,1)$.
- The union $S_{1} \cup S_{2}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

To diagonalize an $n \times n$ matrix A is to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.

Suppose there exists a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ for \mathbb{R}^{n} consisting of eigenvectors of A. That is, $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}$, where $\lambda_{k} \in \mathbb{R}$.
Then $A=U B U^{-1}$, where $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and U is a transition matrix whose columns are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Example. $\quad A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right) . \quad \operatorname{det}(A-\lambda I)=(4-\lambda)(1-\lambda)$.
Eigenvalues: $\lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=\binom{1}{0}, \mathbf{v}_{2}=\binom{-1}{1}$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Suppose we have a problem that involves a square matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal matrix is simple. Then the diagonalization may help in solving this problem (or may not). Namely, it may reduce the case of a diagonalizable matrix to that of a diagonal one.

An example of such a problem is, given a square matrix A, to find its power A^{k} :
$A=\left(\begin{array}{cccc}s_{1} & & & O \\ & s_{2} & & \\ & & \ddots & \\ O & & & s_{n}\end{array}\right) \Longrightarrow A^{k}=\left(\begin{array}{cccc}s_{1}^{k} & & & O \\ & s_{2}^{k} & & \\ & & \ddots & \\ 0 & & & s_{n}^{k}\end{array}\right)$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find A^{5}.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then $A^{5}=U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1}$

$$
\begin{aligned}
& =U B^{5} U^{-1}=\left(\begin{array}{lr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1024 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1024 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1024 & 1023 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find $A^{k}(k \geq 1)$.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\begin{aligned}
A^{k} & =U B^{k} U^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
4^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{rr}
4^{k} & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
4^{k} & 4^{k}-1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$. Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.
We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

There are two obstructions to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.
Example 1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.
Example 2. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. $\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

Topics for Test 2

Coordinates and linear transformations (Leon 3.5, 4.1-4.3)

- Coordinates relative to a basis
- Change of basis, transition matrix
- Matrix transformations
- Matrix of a linear transformation
- Similarity of matrices

Orthogonality (Leon 5.1-5.6)

- Inner products and norms
- Orthogonal complement, orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization

Proofs to know

Theorem 1 Any linear mapping $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a matrix transformation.

Theorem 2 The orthogonal complement of the row space of a matrix A is the nullspace of A.

Theorem 3 If nonzero vectors in an inner product space are orthogonal to each other, then they are linearly independent.

Theorem $4 \lambda \in \mathbb{R}$ is an eigenvalue of a matrix A if and only if $\operatorname{det}(A-\lambda I)=0$.

Theorem 5 Similar matrices have the same characteristic polynomial.

Theorem 6 If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of the same linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Sample problems for Test 2

Problem 1 (15 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Problem 2 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

x	-2	-1	0	1	2
$f(x)$	-3	-2	1	2	5

Problem 3 (25 pts.) Let V be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for V.
(ii) Find an orthonormal basis for the orthogonal complement V^{\perp}.

Problem 4 (30 pts.) Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A^{2}.

Bonus Problem 5 (15 pts.) Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

$$
\operatorname{dim} \operatorname{Range}(L)+\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} V .
$$

Problem 1. Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis
$E_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Let M_{L} denote the desired matrix.
By definition, M_{L} is a 4×4 matrix whose columns are coordinates of the matrices $L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)$ with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$.

$$
\begin{aligned}
L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=1 E_{1}+2 E_{2}+0 E_{3}+0 E_{4}, \\
L\left(E_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 4 \\
0 & 0
\end{array}\right)=3 E_{1}+4 E_{2}+0 E_{3}+0 E_{4}, \\
L\left(E_{3}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right)=0 E_{1}+0 E_{2}+1 E_{3}+2 E_{4}, \\
L\left(E_{4}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
3 & 4
\end{array}\right)=0 E_{1}+0 E_{2}+3 E_{3}+4 E_{4} .
\end{aligned}
$$

It follows that

$$
M_{L}=\left(\begin{array}{llll}
1 & 3 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 2 & 4
\end{array}\right)
$$

Thus the relation

$$
\left(\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & w_{1}
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

is equivalent to the relation

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1} \\
w_{1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 3 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 2 & 4
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) .
$$

Problem 2. Find a linear polynomial which is the best least squares fit to the following data:

$$
\begin{array}{c||c|c|c|c|c}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & -3 & -2 & 1 & 2 & 5
\end{array}
$$

We are looking for a function $f(x)=c_{1}+c_{2} x$, where c_{1}, c_{2} are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c_{1} and c_{2} :

$$
\left\{\begin{array}{l}
c_{1}-2 c_{2}=-3 \\
c_{1}-c_{2}=-2 \\
c_{1}=1 \\
c_{1}+c_{2}=2 \\
c_{1}+2 c_{2}=5
\end{array}\right.
$$

This system is inconsistent.

We can represent the system as a matrix equation $A c=y$, where

$$
A=\left(\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right), \quad \mathbf{c}=\binom{c_{1}}{c_{2}}, \quad \mathbf{y}=\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
2 \\
5
\end{array}\right)
$$

The least squares solution \mathbf{c} of the above system is a solution of the normal system $A^{T} A \mathbf{c}=A^{T} \mathbf{y}$:

$$
\begin{gathered}
\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
2 \\
5
\end{array}\right) \\
\\
\Longleftrightarrow\left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{3}{20} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
c_{1}=3 / 5 \\
c_{2}=2
\end{array}\right.
\end{gathered}
$$

Thus the function $f(x)=\frac{3}{5}+2 x$ is the best least squares fit to the above data among linear polynomials.

I

Problem 3. Let V be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ for the subspace V :
$\mathbf{v}_{1}=\mathbf{x}_{1}=(1,1,1,1)$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=(1,0,3,0)-\frac{4}{4}(1,1,1,1)=(0,-1,2,-1)$.
Then we normalize vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ to obtain an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}$ for V :

$$
\begin{aligned}
& \left\|\mathbf{v}_{1}\right\|=2 \quad \Longrightarrow \quad \mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{2}(1,1,1,1) \\
& \left\|\mathbf{v}_{2}\right\|=\sqrt{6} \quad \Longrightarrow \quad \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{6}}(0,-1,2,-1)
\end{aligned}
$$

Problem 3. Let V be a subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(ii) Find an orthonormal basis for the orthogonal complement V^{\perp}.

Since the subspace V is spanned by vectors $(1,1,1,1)$ and $(1,0,3,0)$, it is the row space of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0
\end{array}\right) .
$$

Then the orthogonal complement V^{\perp} is the nullspace of A.
To find the nullspace, we convert the matrix A to reduced row echelon form:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 1
\end{array}\right) .
$$

Hence a vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ belongs to V^{\perp} if and only if

$$
\begin{gathered}
\left(\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{0}{0} \\
\Longleftrightarrow\left\{\begin{array} { l }
{ x _ { 1 } + 3 x _ { 3 } = 0 } \\
{ x _ { 2 } - 2 x _ { 3 } + x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=-3 x_{3} \\
x_{2}=2 x_{3}-x_{4}
\end{array}\right.\right.
\end{gathered}
$$

The general solution of the system is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $=(-3 t, 2 t-s, t, s)=t(-3,2,1,0)+s(0,-1,0,1)$, where $t, s \in \mathbb{R}$.

It follows that V^{\perp} is spanned by vectors $\mathbf{x}_{3}=(0,-1,0,1)$ and $\mathbf{x}_{4}=(-3,2,1,0)$.

The vectors $\mathbf{x}_{3}=(0,-1,0,1)$ and $\mathbf{x}_{4}=(-3,2,1,0)$ form a basis for the subspace V^{\perp}.
It remains to orthogonalize and normalize this basis:
$\mathbf{v}_{3}=\mathbf{x}_{3}=(0,-1,0,1)$,
$\mathbf{v}_{4}=\mathbf{x}_{4}-\frac{\mathbf{x}_{4} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}=(-3,2,1,0)-\frac{-2}{2}(0,-1,0,1)$
$=(-3,1,1,1)$,
$\left\|\mathbf{v}_{3}\right\|=\sqrt{2} \quad \Longrightarrow \quad \mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\frac{1}{\sqrt{2}}(0,-1,0,1)$,
$\left\|\mathbf{v}_{4}\right\|=\sqrt{12}=2 \sqrt{3} \Longrightarrow \mathbf{w}_{4}=\frac{\mathbf{v}_{4}}{\left\|\mathbf{v}_{4}\right\|}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)$.
Thus the vectors $\mathbf{w}_{3}=\frac{1}{\sqrt{2}}(0,-1,0,1)$ and $\mathbf{w}_{4}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)$ form an orthonormal basis for V^{\perp}.

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. We obtain that

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right| \\
=(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda)=(1-\lambda)\left((1-\lambda)^{2}-4\right) \\
=(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{gathered}
$$

Hence the matrix A has three eigenvalues: $-1,1$, and 3 .

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)$ of the matrix A associated with an eigenvalue λ is a nonzero solution of the vector equation

$$
(A-\lambda /) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

To solve the equation, we convert the matrix $A-\lambda I$ to reduced row echelon form.

First consider the case $\lambda=-1$. The row reduction yields

$$
\begin{gathered}
A+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \\
\rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A+I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)$ is an eigenvector of A associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields
$A-I=\left(\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Hence

$$
(A-I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-t, y=0, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)$ is an eigenvector of A associated with the eigenvalue 1 .

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{gathered}
A-3 \left\lvert\,=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right)\right. \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A-3 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)$ is an eigenvector of A associated with the eigenvalue 3 .

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for \mathbb{R}^{3} formed by its eigenvectors.
Namely, the vectors $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}.
Alternatively, the existence of a basis for \mathbb{R}^{3} consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iv) Find all eigenvalues of the matrix A^{2}.

Suppose that \mathbf{v} is an eigenvector of the matrix A associated with an eigenvalue λ, that is, $\mathbf{v} \neq \mathbf{0}$ and $A \mathbf{v}=\lambda \mathbf{v}$. Then

$$
A^{2} \mathbf{v}=A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \mathbf{v})=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v}
$$

Therefore \mathbf{v} is also an eigenvector of the matrix A^{2} and the associated eigenvalue is λ^{2}. We already know that the matrix A has eigenvalues $-1,1$, and 3 . It follows that A^{2} has eigenvalues 1 and 9 .

Since a 3×3 matrix can have up to 3 eigenvalues, we need an additional argument to show that 1 and 9 are the only eigenvalues of A^{2}. One reason is that the eigenvalue 1 has multiplicity 2.

Bonus Problem 5. Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that $\operatorname{dim} \operatorname{Range}(L)+\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} V$.

The kernel $\operatorname{ker}(L)$ is a subspace of V. It is finite-dimensional since the vector space V is.
Take a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ for the subspace $\operatorname{ker}(L)$, then extend it to a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ for the entire space V.
Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Assuming the claim is proved, we obtain $\operatorname{dim} \operatorname{Range}(L)=m, \quad \operatorname{dim} \operatorname{ker}(L)=k, \quad \operatorname{dim} V=k+m$.

Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Proof (spanning): Any vector $\mathbf{w} \in \operatorname{Range}(L)$ is represented as $\mathbf{w}=L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}+\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\cdots+\beta_{m} \mathbf{u}_{m}
$$

for some $\alpha_{i}, \beta_{j} \in \mathbb{R}$. It follows that

$$
\begin{gathered}
\mathbf{w}=L(\mathbf{v})=\alpha_{1} L\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{k} L\left(\mathbf{v}_{k}\right)+\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right) \\
=\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right) .
\end{gathered}
$$

Note that $L\left(\mathbf{v}_{i}\right)=\mathbf{0}$ since $\mathbf{v}_{i} \in \operatorname{ker}(L)$.
Thus Range (L) is spanned by the vectors $L\left(\mathbf{u}_{1}\right), \ldots, L\left(\mathbf{u}_{m}\right)$.

Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Proof (linear independence): Suppose that

$$
t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0}
$$

for some $t_{i} \in \mathbb{R}$. Let $\mathbf{u}=t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}$. Since

$$
L(\mathbf{u})=t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0},
$$

the vector \mathbf{u} belongs to the kernel of L. Therefore $\mathbf{u}=s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{k} \mathbf{v}_{k}$ for some $s_{j} \in \mathbb{R}$. It follows that $t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}-s_{1} \mathbf{v}_{1}-s_{2} \mathbf{v}_{2}-\cdots-s_{k} \mathbf{v}_{k}=\mathbf{u}-\mathbf{u}=\mathbf{0}$.

Linear independence of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ implies that $t_{1}=\cdots=t_{m}=0$ (as well as $s_{1}=\cdots=s_{k}=0$). Thus the vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ are linearly independent.

