# MATH 323 <br> Linear Algebra 

## Lecture 26:

Orthogonal polynomials.
Review for the final exam.

## Orthogonal polynomials

$\mathcal{P}$ : the vector space of all polynomials with real coefficients: $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$. Basis for $\mathcal{P}$ : $1, x, x^{2}, \ldots, x^{n}, \ldots$

Suppose that $\mathcal{P}$ is endowed with an inner product. Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_{0}, p_{1}, p_{2}, \ldots$ such that $\operatorname{deg} p_{n}=n$ ( $p_{0}$ is a nonzero constant) and $\left\langle p_{n}, p_{m}\right\rangle=0$ for $n \neq m$.

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1, x, x^{2}, \ldots$ :
$p_{0}(x)=1$,
$p_{1}(x)=x-\frac{\left\langle x, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)$,
$p_{2}(x)=x^{2}-\frac{\left\langle x^{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)-\frac{\left\langle x^{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)$,
$p_{n}(x)=x^{n}-\frac{\left\langle x^{n}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)-\cdots-\frac{\left\langle x^{n}, p_{n-1}\right\rangle}{\left\langle p_{n-1}, p_{n-1}\right\rangle} p_{n-1}(x)$,

Then $p_{0}, p_{1}, p_{2}, \ldots$ are orthogonal polynomials.

Theorem (a) Orthogonal polynomials always exist.
(b) The orthogonal polynomial of a fixed degree is unique up to scaling.
(c) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, q\rangle=0$ for any polynomial $q$ with $\operatorname{deg} q<\operatorname{deg} p$.
(d) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\left\langle p, x^{k}\right\rangle=0$ for any $0 \leq k<\operatorname{deg} p$.

Proof of statement (b): Suppose that $P$ and $R$ are two orthogonal polynomials of the same degree $n$. Then
$P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and
$R(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}$, where $a_{n}, b_{n} \neq 0$.
Consider a polynomial $Q(x)=b_{n} P(x)-a_{n} R(x)$. By
construction, $\operatorname{deg} Q<n$. It follows from statement (c) that $\langle P, Q\rangle=\langle R, Q\rangle=0$. Then
$\langle Q, Q\rangle=\left\langle b_{n} P-a_{n} R, Q\right\rangle=b_{n}\langle P, Q\rangle-a_{n}\langle R, Q\rangle=0$,
which means that $Q=0$. Thus $R(x)=\left(a_{n}^{-1} b_{n}\right) P(x)$.

Example. $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.
Note that $\left\langle x^{m}, x^{n}\right\rangle=\int_{-1}^{1} x^{m+n} d x=0$ if $m+n$ is odd. Hence $p_{2 k}(x)$ contains only even powers of $x$ while $p_{2 k+1}(x)$ contains only odd powers of $x$.
$p_{0}(x)=1$,
$p_{1}(x)=x$,
$p_{2}(x)=x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle}=x^{2}-\frac{1}{3}$,
$p_{3}(x)=x^{3}-\frac{\left\langle x^{3}, x\right\rangle}{\langle x, x\rangle} x=x^{3}-\frac{3}{5} x$.
$p_{0}, p_{1}, p_{2}, \ldots$ are called the Legendre polynomials.

Instead of normalization, the orthogonal polynomials are subject to standardization.

The standardization for the Legendre polynomials is $P_{n}(1)=1$. In particular, $P_{0}(x)=1, P_{1}(x)=x$, $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$.
Problem. Find $P_{4}(x)$.
Let $P_{4}(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. We know that $P_{4}(1)=1$ and $\left\langle P_{4}, x^{k}\right\rangle=0$ for $0 \leq k \leq 3$.
$P_{4}(1)=a_{4}+a_{3}+a_{2}+a_{1}+a_{0}$,
$\left\langle P_{4}, 1\right\rangle=\frac{2}{5} a_{4}+\frac{2}{3} a_{2}+2 a_{0}, \quad\left\langle P_{4}, x\right\rangle=\frac{2}{5} a_{3}+\frac{2}{3} a_{1}$,
$\left\langle P_{4}, x^{2}\right\rangle=\frac{2}{7} a_{4}+\frac{2}{5} a_{2}+\frac{2}{3} a_{0}, \quad\left\langle P_{4}, x^{3}\right\rangle=\frac{2}{7} a_{3}+\frac{2}{5} a_{1}$.

$$
\begin{aligned}
& \left(a_{4}+a_{3}+a_{2}+a_{1}+a_{0}=1\right. \\
& \frac{2}{5} a_{4}+\frac{2}{3} a_{2}+2 a_{0}=0 \\
& \frac{2}{5} a_{3}+\frac{2}{3} a_{1}=0 \\
& \frac{2}{7} a_{4}+\frac{2}{5} a_{2}+\frac{2}{3} a_{0}=0 \\
& \frac{2}{7} a_{3}+\frac{2}{5} a_{1}=0 \\
& \left\{\begin{array}{l}
\frac{2}{5} a_{3}+\frac{2}{3} a_{1}=0 \\
\frac{2}{7} a_{3}+\frac{2}{5} a_{1}=0
\end{array} \quad \Longrightarrow a_{1}=a_{3}=0\right. \\
& \left\{\begin{array} { l } 
{ a _ { 4 } + a _ { 2 } + a _ { 0 } = 1 } \\
{ \frac { 2 } { 5 } a _ { 4 } + \frac { 2 } { 3 } a _ { 2 } + 2 a _ { 0 } = 0 } \\
{ \frac { 2 } { 7 } a _ { 4 } + \frac { 2 } { 5 } a _ { 2 } + \frac { 2 } { 3 } a _ { 0 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a_{4}=\frac{35}{8} \\
a_{2}=-\frac{30}{8} \\
a_{0}=\frac{3}{8}
\end{array}\right.\right.
\end{aligned}
$$

Thus $P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$.


Legendre polynomials

Problem. Find a quadratic polynomial that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$.

The best least squares fit is a polynomial $p(x)$ that minimizes the distance relative to the integral norm

$$
\|f-p\|=\left(\int_{-1}^{1}|f(x)-p(x)|^{2} d x\right)^{1 / 2}
$$

over all polynomials of degree 2 .
The norm $\|f-p\|$ is minimal if $p$ is the orthogonal projection of the function $f$ on the subspace $\mathcal{P}_{3}$ of polynomials of degree at most 2 .

The Legendre polynomials $P_{0}, P_{1}, P_{2}$ form an orthogonal basis for $\mathcal{P}_{3}$. Therefore

$$
\begin{aligned}
& p(x)=\frac{\left\langle f, P_{0}\right\rangle}{\left\langle P_{0}, P_{0}\right\rangle} P_{0}(x)+\frac{\left\langle f, P_{1}\right\rangle}{\left\langle P_{1}, P_{1}\right\rangle} P_{1}(x)+\frac{\left\langle f, P_{2}\right\rangle}{\left\langle P_{2}, P_{2}\right\rangle} P_{2}(x) . \\
& \left\langle f, P_{0}\right\rangle=\int_{-1}^{1}|x| d x=2 \int_{0}^{1} x d x=1, \\
& \left\langle f, P_{1}\right\rangle=\int_{-1}^{1}|x| x d x=0, \\
& \left\langle f, P_{2}\right\rangle=\int_{-1}^{1}|x| \frac{3 x^{2}-1}{2} d x=\int_{0}^{1} x\left(3 x^{2}-1\right) d x=\frac{1}{4}, \\
& \left\langle P_{0}, P_{0}\right\rangle=\int_{-1}^{1} d x=2, \quad\left\langle P_{2}, P_{2}\right\rangle=\int_{-1}^{1}\left(\frac{3 x^{2}-1}{2}\right)^{2} d x=\frac{2}{5} . \\
& \text { In general, }\left\langle P_{n}, P_{n}\right\rangle=\frac{2}{2 n+1} .
\end{aligned}
$$

Problem. Find a quadratic polynomial that is the best least squares fit to the function $f(x)=|x|$ on the interval $[-1,1]$.

Solution: $\quad p(x)=\frac{1}{2} P_{0}(x)+\frac{5}{8} P_{2}(x)$

$$
=\frac{1}{2}+\frac{5}{16}\left(3 x^{2}-1\right)=\frac{3}{16}\left(5 x^{2}+1\right) .
$$



## How to evaluate orthogonal polynomials

Suppose $p_{0}, p_{1}, p_{2}, \ldots$ are orthogonal polynomials with respect to an inner product of the form

$$
\langle p, q\rangle=\int_{a}^{b} p(x) q(x) w(x) d x
$$

Theorem The polynomials satisfy recurrences

$$
p_{n}(x)=\left(\alpha_{n} x+\beta_{n}\right) p_{n-1}(x)+\gamma_{n} p_{n-2}(x)
$$

for all $n \geq 2$, where $\alpha_{n}, \beta_{n}, \gamma_{n}$ are some constants.
Recurrent formulas for the Legendre polynomials:

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

For example, $4 P_{4}(x)=7 x P_{3}(x)-3 P_{2}(x)$.

Definition. Chebyshev polynomials $T_{0}, T_{1}, T_{2}, \ldots$ are orthogonal polynomials relative to the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} \frac{p(x) q(x)}{\sqrt{1-x^{2}}} d x
$$

with the standardization $T_{n}(1)=1$.
Remark. "T" is like in "Tschebyscheff".
Change of variable in the integral: $x=\cos \phi$.

$$
\begin{aligned}
\langle p, q\rangle & =-\int_{0}^{\pi} \frac{p(\cos \phi) q(\cos \phi)}{\sqrt{1-\cos ^{2} \phi}} \cos ^{\prime} \phi d \phi \\
& =\int_{0}^{\pi} p(\cos \phi) q(\cos \phi) d \phi
\end{aligned}
$$

Theorem. $\quad T_{n}(\cos \phi)=\cos n \phi$.

$$
\begin{aligned}
& \left\langle T_{n}, T_{m}\right\rangle=\int_{0}^{\pi} T_{n}(\cos \phi) T_{m}(\cos \phi) d \phi \\
= & \int_{0}^{\pi} \cos (n \phi) \cos (m \phi) d \phi=0 \text { if } n \neq m .
\end{aligned}
$$

Recurrent formula: $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$.
$T_{0}(x)=1, \quad T_{1}(x)=x$,
$T_{2}(x)=2 x^{2}-1$,
$T_{3}(x)=4 x^{3}-3 x$,
$T_{4}(x)=8 x^{4}-8 x^{2}+1, \ldots$
That is, $\cos 2 \phi=2 \cos ^{2} \phi-1$,
$\cos 3 \phi=4 \cos ^{3} \phi-3 \cos \phi$,
$\cos 4 \phi=8 \cos ^{4} \phi-8 \cos ^{2} \phi+1, \ldots$


Chebyshev polynomials

## Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for $2 \times 2$ and $3 \times 3$ matrices, row and column expansions, elementary row and column operations.


## Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1-3.6, 4.1-4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear transformation.
- Change of basis for a linear operator.
- Similarity of matrices.


## Topics for the final exam: Parts III-IV

Advanced linear algebra (Leon 5.1-5.7, 6.1-6.3)

- Euclidean structure in $\mathbb{R}^{n}$ (length, angle, dot product).
- Orthogonal complement, orthogonal projection.
- Inner products and norms.
- Least squares problems.
- The Gram-Schmidt orthogonalization process.
- Orthogonal polynomials.
- Eigenvalues, eigenvectors, eigenspaces.
- Characteristic polynomial.
- Bases of eigenvectors, diagonalization.
- Matrix exponentials.
- Complex eigenvalues and eigenvectors.
- Orthogonal matrices.
- Rigid motions, rotations in space.


## Proofs to know

Theorem 1 If two $n \times n$ matrices $A$ and $B$ are invertible, then the product $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem 2 If an $n \times n$ matrix $A$ is invertible, then for any $n$-dimensional column vector $\mathbf{b}$ the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, which is $\mathbf{x}=A^{-1} \mathbf{b}$.

## Proofs to know

Theorem 3 In any vector space, the zero vector is unique and the negative vector is unique.

Theorem 4 For any vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in a vector space $V$, the set of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$, $r_{i} \in \mathbb{R}$ is a subspace of $V$.

Theorem 5 Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}(k \geq 2)$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.

Theorem 6 Functions $f_{1}, f_{2}, \ldots, f_{n} \in C[a, b]$ are linearly independent whenever their Wronskian $W\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ is well defined and not identically zero on $[a, b]$.

## Proofs to know

Theorem 7 Any linear mapping $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a matrix transformation.

Theorem 8 The orthogonal complement of the row space of a matrix $A$ is the nullspace of $A$.

Theorem 9 If nonzero vectors in an inner product space are orthogonal to each other, then they are linearly independent.

Theorem $10 \lambda \in \mathbb{R}$ is an eigenvalue of a matrix $A$ if and only if $\operatorname{det}(A-\lambda I)=0$.

Theorem 11 Similar matrices have the same characteristic polynomial.

Theorem 12 If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of the same linear operator $L$ associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

## Proofs to know

Theorem 13 A square matrix is orthogonal if and only if its columns form an orthonormal set.

Problem. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}$, where
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
(a) Find the matrix $B$ of the operator $L$.
(b) Find the range and kernel of $L$.
(c) Find the eigenvalues of $L$.
(d) Find the matrix of the operator $L^{2013}$ ( $L$ applied 2013 times).
$L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}, \quad \mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Let $\mathbf{v}=(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. Then

$$
\begin{aligned}
& L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
3 / 5 & 0 & -4 / 5 \\
x & y & z
\end{array}\right| \\
& \quad=\frac{4}{5} y \mathbf{e}_{1}-\left(\frac{4}{5} x+\frac{3}{5} z\right) \mathbf{e}_{2}+\frac{3}{5} y \mathbf{e}_{3} .
\end{aligned}
$$

In particular, $L\left(\mathbf{e}_{1}\right)=-\frac{4}{5} \mathbf{e}_{2}, \quad L\left(\mathbf{e}_{2}\right)=\frac{4}{5} \mathbf{e}_{1}+\frac{3}{5} \mathbf{e}_{3}$, $L\left(\mathbf{e}_{3}\right)=-\frac{3}{5} \mathbf{e}_{2}$.
Therefore $B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
$B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
The range of the operator $L$ is spanned by columns of the matrix $B$. It follows that Range $(L)$ is the plane spanned by $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(4,0,3)$.
The kernel of $L$ is the nullspace of the matrix $B$, i.e., the solution set for the equation $B \mathbf{x}=\mathbf{0}$.

$$
\begin{array}{r}
\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow x+\frac{3}{4} z=y=0 \Longrightarrow x=t(-3 / 4,0,1)
\end{array}
$$

Alternatively, the kernel of $L$ is the set of vectors $\mathbf{v} \in \mathbb{R}^{3}$ such that $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\mathbf{0}$.
It follows that this is the line spanned by
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Characteristic polynomial of the matrix $B$ :

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 / 5 & 0 \\
-4 / 5 & -\lambda & -3 / 5 \\
0 & 3 / 5 & -\lambda
\end{array}\right| \\
=-\lambda^{3}-(3 / 5)^{2} \lambda-(4 / 5)^{2} \lambda=-\lambda^{3}-\lambda=-\lambda\left(\lambda^{2}+1\right) .
\end{gathered}
$$

The eigenvalues are $0, i$, and $-i$.

The matrix of the operator $L^{2013}$ is $B^{2013}$.
Since the matrix $B$ has eigenvalues $0, i$, and $-i$, it is diagonalizable in $\mathbb{C}^{3}$. Namely, $B=U D U^{-1}$, where $U$ is an invertible matrix with complex entries and

$$
D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Then $B^{2013}=U D^{2013} U^{-1}$. We have that $D^{2013}=$ $=\operatorname{diag}\left(0, i^{2013},(-i)^{2013}\right)=\operatorname{diag}(0, i,-i)=D$. Hence

$$
B^{2013}=U D U^{-1}=B=\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right)
$$

