Linear Algebra

MATH 323

Lecture 26:
Orthogonal polynomials.
Review for the final exam.

Orthogonal polynomials

 \mathcal{P} : the vector space of all polynomials with real coefficients: $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$.

Basis for \mathcal{P} : $1, x, x^2, \dots, x^n, \dots$

Suppose that ${\mathcal P}$ is endowed with an inner product.

Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_0, p_1, p_2, ...$ such that deg $p_n = n$ (p_0 is a nonzero constant) and $\langle p_n, p_m \rangle = 0$ for $n \neq m$.

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1. x. x^2...$

$$p_0(x)=1,$$
 $p_1(x)=x-rac{\langle x,p_0
angle}{\langle p_0,p_0
angle}p_0(x),$

$$egin{align} p_1(x) &= x - rac{\langle x^2, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x), \ p_2(x) &= x^2 - rac{\langle x^2, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) - rac{\langle x^2, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x), \ \end{array}$$

 $p_n(x) = x^n - \frac{\langle x'', p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) - \cdots - \frac{\langle x^n, p_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle} p_{n-1}(x),$

Then p_0, p_1, p_2, \ldots are orthogonal polynomials.

Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is unique up to scaling.

(c) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, q \rangle = 0$ for any polynomial q with $\deg q < \deg p$.

(d) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, x^k \rangle = 0$ for any $0 \leq k < \deg p$.

Proof of statement (b): Suppose that P and R are two orthogonal polynomials of the same degree n. Then $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and $R(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$, where $a_n, b_n \neq 0$. Consider a polynomial $Q(x) = b_n P(x) - a_n R(x)$. By construction, deg Q < n. It follows from statement (c) that $\langle P, Q \rangle = \langle R, Q \rangle = 0$. Then $\langle Q, Q \rangle = \langle b_n P - a_n R, Q \rangle = b_n \langle P, Q \rangle - a_n \langle R, Q \rangle = 0$,

which means that Q = 0. Thus $R(x) = (a_n^{-1}b_n) P(x)$.

while $p_{2k+1}(x)$ contains only odd powers of x.

odd. Hence $p_{2k}(x)$ contains only even powers of x $p_0(x) = 1$, $p_1(x) = x$

Note that $\langle x^m, x^n \rangle = \int_{-1}^1 x^{m+n} dx = 0$ if m+n is

Example. $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx$.

 $p_2(x) = x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} = x^2 - \frac{1}{3},$

 $p_3(x) = x^3 - \frac{\langle x^3, x \rangle}{\langle x, x \rangle} x = x^3 - \frac{3}{5} x.$ p_0, p_1, p_2, \ldots are called the **Legendre polynomials**. Instead of normalization, the orthogonal polynomials are subject to **standardization**.

The standardization for the Legendre polynomials is $P_n(1)=1$. In particular, $P_0(x)=1$, $P_1(x)=x$, $P_2(x)=\frac{1}{2}(3x^2-1)$, $P_3(x)=\frac{1}{2}(5x^3-3x)$.

Problem. Find $P_4(x)$.

Let $P_4(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$. We know that $P_4(1) = 1$ and $\langle P_4, x^k \rangle = 0$ for $0 \le k \le 3$.

$$P_4(1) = a_4 + a_3 + a_2 + a_1 + a_0,$$

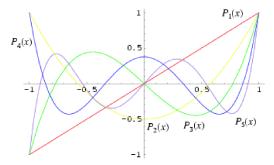
 $\langle P_4, 1 \rangle = \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0, \ \langle P_4, x \rangle = \frac{2}{5}a_3 + \frac{2}{3}a_1,$
 $\langle P_4, x^2 \rangle = \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0, \ \langle P_4, x^3 \rangle = \frac{2}{7}a_3 + \frac{2}{5}a_1.$

$$\begin{cases} a_4 + a_3 + a_2 + a_1 + a_0 = 1 \\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0 \\ \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0 \\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$

$$\begin{cases} \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0 \\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$

$$\begin{cases} a_4 + a_2 + a_0 = 1 \\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0 \\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \end{cases} \iff \begin{cases} a_4 = \frac{35}{8} \\ a_2 = -\frac{30}{8} \\ a_0 = \frac{3}{8} \end{cases}$$

Thus $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$.



Legendre polynomials

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1,1].

The best least squares fit is a polynomial p(x) that minimizes the distance relative to the integral norm

$$||f-p|| = \left(\int_{-1}^{1} |f(x)-p(x)|^2 dx\right)^{1/2}$$

over all polynomials of degree 2.

The norm ||f - p|| is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of polynomials of degree at most 2.

The Legendre polynomials P_0, P_1, P_2 form an orthogonal basis for \mathcal{P}_3 . Therefore

$$p(x) = \frac{\langle f, P_0 \rangle}{\langle P_0, P_0 \rangle} P_0(x) + \frac{\langle f, P_1 \rangle}{\langle P_1, P_1 \rangle} P_1(x) + \frac{\langle f, P_2 \rangle}{\langle P_2, P_2 \rangle} P_2(x).$$

$$\langle f, P_0 \rangle = \int_{-1}^1 |x| \, dx = 2 \int_0^1 x \, dx = 1,$$

$$\langle f, P_1 \rangle = \int_{-1}^{1} |x| x \, dx = 0,$$

$$(1, 1) - \int_{-1}^{1} |x| \, dx = 0$$

$$\langle f, P_2 \rangle = \int_{-1}^{1} |x| \frac{3x^2 - 1}{2} dx = \int_{0}^{1} x(3x^2 - 1) dx = \frac{1}{4},$$

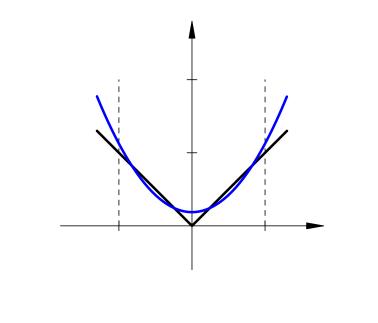
$$\langle P_0, P_0 \rangle = \int_{-1}^1 dx = 2, \qquad \langle P_2, P_2 \rangle = \int_{-1}^1 \left(\frac{3x^2 - 1}{2} \right)^2 dx = \frac{2}{5}.$$
 In general, $\langle P_n, P_n \rangle = \frac{2}{2n + 1}.$

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval $\begin{bmatrix} 1 & 1 \end{bmatrix}$

the interval
$$[-1,1]$$
.

Solution:
$$p(x) = \frac{1}{2}P_0(x) + \frac{5}{8}P_2(x)$$

$$=\frac{1}{2}+\frac{5}{16}(3x^2-1)=\frac{3}{16}(5x^2+1).$$



How to evaluate orthogonal polynomials

Suppose p_0, p_1, p_2, \ldots are orthogonal polynomials with respect to an inner product of the form

$$\langle p,q\rangle=\int_a^b p(x)q(x)w(x)\,dx.$$

Theorem The polynomials satisfy recurrences

$$p_n(x) = (\alpha_n x + \beta_n) p_{n-1}(x) + \gamma_n p_{n-2}(x)$$

for all $n \geq 2$, where $\alpha_n, \beta_n, \gamma_n$ are some constants.

Recurrent formulas for the Legendre polynomials:

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$$

For example, $4P_4(x) = 7xP_3(x) - 3P_2(x)$.

Definition. Chebyshev polynomials $T_0, T_1, T_2, ...$ are orthogonal polynomials relative to the inner product

$$\langle p,q\rangle = \int_{-1}^{1} \frac{p(x)q(x)}{\sqrt{1-x^2}} dx,$$

with the standardization $T_n(1) = 1$.

Remark. "T" is like in "Tschebyscheff".

Change of variable in the integral: $x = \cos \phi$.

$$egin{aligned} \langle p,q
angle &= -\int_0^\pi rac{p(\cos\phi)\,q(\cos\phi)}{\sqrt{1-\cos^2\phi}}\cos'\phi\,d\phi \ &= \int_0^\pi p(\cos\phi)\,q(\cos\phi)\,d\phi. \end{aligned}$$

Theorem. $T_n(\cos\phi) = \cos n\phi$.

$$\langle T_n, T_m \rangle = \int_0^{\pi} T_n(\cos \phi) T_m(\cos \phi) d\phi$$

= $\int_0^{\pi} \cos(n\phi) \cos(m\phi) d\phi = 0$ if $n \neq m$.

Recurrent formula: $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

Recurrent formula:
$$I_{n+1}(x) = 2xI_n(x) - I_{n-1}(x)$$

$$T_0(x) = 1$$
, $T_1(x) = x$,

$$I_0(x) = 1, \quad I_1(x) = x,$$
 $T_2(x) = 2x^2 - 1,$

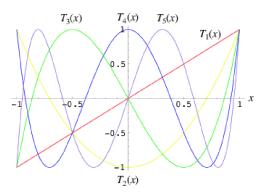
$$T_2(x) = 2x^2 - 1,$$

 $T_3(x) = 4x^3 - 3x,$

$$T_4(x) = 8x^4 - 8x^2 + 1, \dots$$

That is, $\cos 2\phi = 2\cos^2 \phi - 1$, $\cos 3\phi = 4\cos^3 \phi - 3\cos \phi$.

$$\cos 4\phi = 8\cos^4 \phi - 8\cos^2 \phi + 1, \dots$$



Chebyshev polynomials

Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1–1.5, 2.1–2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
 - Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1–3.6, 4.1–4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
 - Span, spanning set. Linear independence.
 - Bases and dimension.
 - Rank and nullity of a matrix.
 - Coordinates relative to a basis.
 - Change of basis, transition matrix.
 - Linear transformations.
 - Matrix transformations.
 - Matrix of a linear transformation.
 - Change of basis for a linear operator.
 - Similarity of matrices.

Topics for the final exam: Parts III-IV

Advanced linear algebra (Leon 5.1–5.7, 6.1–6.3)

- Euclidean structure in \mathbb{R}^n (length, angle, dot product).
- Orthogonal complement, orthogonal projection.
- Inner products and norms.
- Least squares problems.
- The Gram-Schmidt orthogonalization process.
- Orthogonal polynomials.
- Eigenvalues, eigenvectors, eigenspaces.
- Characteristic polynomial.
- Bases of eigenvectors, diagonalization.
- Matrix exponentials.
- Complex eigenvalues and eigenvectors.
- Orthogonal matrices.
- Rigid motions, rotations in space.

Theorem 1 If two $n \times n$ matrices A and B are invertible, then the product AB is also invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem 2 If an $n \times n$ matrix A is invertible, then for any n-dimensional column vector \mathbf{b} the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution, which is $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem 3 In any vector space, the zero vector is unique and the negative vector is unique.

Theorem 4 For any vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in a vector space V, the set of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_k\mathbf{v}_k$, $r_i \in \mathbb{R}$ is a subspace of V.

Theorem 5 Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ $(k \ge 2)$ are linearly dependent if and only if one of them is a linear combination of the other k-1 vectors.

Theorem 6 Functions $f_1, f_2, \ldots, f_n \in C[a, b]$ are linearly independent whenever their Wronskian $W[f_1, f_2, \ldots, f_n]$ is well defined and not identically zero on [a, b].

Theorem 7 Any linear mapping $L: \mathbb{R}^m \to \mathbb{R}^n$ is a matrix transformation.

Theorem 8 The orthogonal complement of the row space of a matrix A is the nullspace of A.

Theorem 9 If nonzero vectors in an inner product space are orthogonal to each other, then they are linearly independent.

Theorem 10 $\lambda \in \mathbb{R}$ is an eigenvalue of a matrix A if and only if $\det(A - \lambda I) = 0$.

Theorem 11 Similar matrices have the same characteristic polynomial.

Theorem 12 If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of the same linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Theorem 13 A square matrix is orthogonal if and only if its columns form an orthonormal set.

Problem. Consider a linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$

defined by $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}$, where $\mathbf{v}_0 = (3/5, 0, -4/5)$.

- (a) Find the matrix B of the operator L.
- (b) Find the range and kernel of L.
- (c) Find the range and kernel of L
 (c) Find the eigenvalues of L.
- (d) Find the matrix of the operator L^{2013} (L applied 2013 times).

Let
$$\mathbf{v} = (x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$$
. Then

 $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}, \ \mathbf{v}_0 = (3/5, 0, -4/5).$

Let
$$\mathbf{v} = (x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$$
. Then

$$L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 3/5 & 0 & -4/5 \\ x & y & z \end{vmatrix}$$
$$= \frac{4}{5}y\mathbf{e}_1 - \left(\frac{4}{5}x + \frac{3}{5}z\right)\mathbf{e}_2 + \frac{3}{5}y\mathbf{e}_3.$$

In particular,
$$L(\mathbf{e}_1) = -\frac{4}{5}\mathbf{e}_2$$
, $L(\mathbf{e}_2) = \frac{4}{5}\mathbf{e}_1 + \frac{3}{5}\mathbf{e}_3$, $L(\mathbf{e}_3) = -\frac{3}{5}\mathbf{e}_2$.

Therefore
$$B = \begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix}$$
.

$$B = \begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix}.$$

The range of the operator L is spanned by columns of the matrix B. It follows that $\mathrm{Range}(L)$ is the plane spanned by $\mathbf{v}_1 = (0,1,0)$ and $\mathbf{v}_2 = (4,0,3)$.

The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3/4 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\implies x + \frac{3}{4}z = y = 0 \implies \mathbf{x} = t(-3/4, 0, 1).$$

Alternatively, the kernel of L is the set of vectors $\mathbf{v} \in \mathbb{R}^3$ such that $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \mathbf{0}$.

It follows that this is the line spanned by $\mathbf{v}_0 = (3/5, 0, -4/5)$.

Characteristic polynomial of the matrix *B*:

$$\det(B-\lambda I) = egin{array}{cccc} -\lambda & 4/5 & 0 \ -4/5 & -\lambda & -3/5 \ 0 & 3/5 & -\lambda \end{array} egin{array}{cccc}$$

 $=-\lambda^3-(3/5)^2\lambda-(4/5)^2\lambda=-\lambda^3-\lambda=-\lambda(\lambda^2+1)$.

The eigenvalues are 0, i, and -i.

The matrix of the operator L^{2013} is B^{2013} .

Since the matrix B has eigenvalues 0, i, and -i, it is diagonalizable in \mathbb{C}^3 . Namely, $B = UDU^{-1}$, where U is an invertible matrix with complex entries and

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}.$$

Then $B^{2013} = UD^{2013}U^{-1}$. We have that $D^{2013} = \text{diag}(0, i^{2013}, (-i)^{2013}) = \text{diag}(0, i, -i) = D$.

Hence

$$B^{2013} = UDU^{-1} = B = \begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix}.$$