Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem $1(15$ pts.) Find a quadratic polynomial $p(x)$ such that $p(-1)=p(3)=6$ and $p^{\prime}(2)=p(1)$.

Problem 2 (20 pts.) Consider a linear transformation $L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}+x_{3}+x_{5}, 2 x_{1}-x_{2}+x_{4}\right) .
$$

Find a basis for the null-space of L, then extend it to a basis for \mathbb{R}^{5}.

Problem 3 (20 pts.) Let $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(1,0,1)$. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator on \mathbb{R}^{3} such that $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}, T\left(\mathbf{v}_{2}\right)=\mathbf{v}_{3}, T\left(\mathbf{v}_{3}\right)=\mathbf{v}_{1}$. Find the matrix of the operator T relative to the standard basis.

Problem 4 (20 pts.) Let $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the operator of orthogonal reflection in the plane Π spanned by vectors $\mathbf{u}_{1}=(1,0,-1)$ and $\mathbf{u}_{2}=(1,-1,3)$. Find the image of the vector $\mathbf{u}=(2,3,4)$ under this operator.

Problem 5 (25 pts.) Consider the vector space W of all polynomials of degree at most 3 in variables x and y with real coefficients. Let D be a linear operator on W given by $D(p)=\frac{\partial p}{\partial x}$ for any $p \in W$. Find the Jordan canonical form of the operator D.

Bonus Problem 6 (15 pts.) An upper triangular matrix is called unipotent if all diagonal entries are equal to 1 . Prove that the inverse of a unipotent matrix is also unipotent.

