MATH 423-200/500 Spring 2012

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial p(x) such that p(—1) = p(3) = 6 and
P'(2) = p(1).

Let p(z) = a + bz + cz?. Then p(—1) =a—b+c, p(1) =a+b+c, and p(3) = a + 3b+ 9c. Also,
p'(z) = b+ 2cx so that p/(2) = b+ 4c. The coefficients a, b, and ¢ are to be chosen so that

a—b+c=06, a—b+4+c=06,
a+ 3b+ 9c = 6, <— a+ 3b+ 9c = 6,
b+4c=a+b+c a—3c=0.

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row
echelon form using elementary row operations:

1 -1 116 10 —-3]0 10 =3]0

1 3 96| —+(f1 -1 1}/6]—=10 -1 4]6

10 —-3|0 13 96 13 916
10 =30 1 0 =-3]0 10 =3]0
10 -1 4|6 =10 -1 4|6 | =10 -1 416
0 3 1216 0 0 24|24 0 0 11

10 =3 0 10 =3 O 10 0] 3

-101 4,-6]—=101 O0|-2]—=101 0]-2

0 0 1 1 00 1] 1 0 0 1] 1

We obtain that the system has a unique solution: a = 3, b = —2, and ¢ = 1. Thus p(z) = 2% — 2z + 3.

Problem 2 (20 pts.) Consider a linear transformation L : R® — R? given by
L(xy, 9,23, T4, x5) = (X1 + T3 + T5, 201 — To + T4).
Find a basis for the null-space of L, then extend it to a basis for R?.

The null-space N'(L) consists of all vectors x € R5 such that L(x) = 0. This is the solution set of
the following systems of linear equations:

r1+x3+25=0 1 +x3+25=0
201 —x0o+ x4 =0 —x9 — 2x3 + x4 — 225 =0

r1+x3+a5=0 Tl = —T3— s
To + 2x3 — x4 + 225 =0 To = —2T3 + x4 — 275

The general solution of the system is

X = (_tl - t37 _2t1 + 1o — 2t3> tla t2> t3) = tl(_L _27 17 07 0) + t2(07 17 07 17 0) + t3(_17 _27 07 07 1)7
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where t1, tg,t3 are arbitrary real numbers. We obtain that the null-space N/ (L) is spanned by vectors
vy =(-1,-2,1,0,0), vo = (0,1,0,1,0), and v3 = (—1,—2,0,0,1). The last three coordinates of these
vectors form the standard basis for R3. It follows that the vectors vq, Ve, v3 are linearly independent.
Hence they form a basis for N(L).

To extend the basis for (L) to a basis for R, we need two more vectors. We can use two vectors
from the standard basis. For example, the vectors vi,Vva, v3, e, es form a basis for R?. To verify this,
we show that a 5 x 5 matrix with these vectors as columns has a nonzero determinant:

-1 0 -1 10 10 -1 0 -1

-2 1 -2 01 01 -2 1 -2
10 0O0O0O|=|/00 10 O0]=L1
01 00O 00 01 O
00 100 00 00 1

Problem 3 (20 pts.) Let vi = (1,1,1), vo = (1,1,0), and v3 = (1,0,1). Let T : R — R3
be a linear operator on R? such that T'(vi) = vq, T(vy) = v3, T(v3) = v;. Find the matrix of
the operator T relative to the standard basis.

Let U be a 3 x 3 matrix such that its columns are vectors vy, vo, vs:
111
U=(1 10
1 01
To determine whether vy, vy, V3 is a basis for R3, we find the determinant of U:

detU = =—1.

10

—_ =

11
1 0=
01

== O
O = O
— O

-]

Since det U # 0, the vectors vy, vo, Vs are linearly independent. Therefore they form a basis for R3.
It follows that the operator T is defined well and uniquely.
The matrix of the operator T relative to the basis vi, vg, v3 is

B =

O = O
= o O
O O =

Since the matrix U is the transition matrix from vy, vy, vs to the standard basis, the matrix of T
relative to the standard basis is A = UBU .

To find the inverse U™!, we merge the matrix U with the identity matrix I into one 3 x 6 matrix
and apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half
I will be converted into U~

1 1 1]1 0 0 11 1] 10 0 1 1 1| 100
wn=|(110/010|={00-1|-1 100 0 -1[-110
10 1[0 0 1 10 1| 001 0 -1 0|-10 1
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1 00[-1 1 1
-0 10| 1 0 —1|=U".
001 1 -1 0
Thus
111 00 1\ /- 1
A=UBU'=[11 0 1 00 0 —
101 010 1 -1 0
111\ /-1 1 1 1 0 0
=10 1 1 0 -1]=(0 o0 1
01 1 1 -1 0 2 -1 -1

Problem 4 (20 pts.) Let R:R?® — R? be the operator of orthogonal reflection in the
plane II spanned by vectors u; = (1,0, —1) and uy = (1,—1,3). Find the image of the vector
u = (2,3,4) under this operator.

By definition of the orthogonal reflection, R(x) = x for any vector x € IT and R(y) = —y for any
vector y orthogonal to the plane II. The vector u is uniquely decomposed as u = p + o, where p € II
and o € [I*. Then R(u) = R(p + o) = R(p) + R(0) =p — o.

The component p is the orthogonal projection of the vector u onto the plane II. We can compute
it using the formula

_ (wwvi) (u, vo)

(vi,vi) T (va,va)

in which vy, v is an arbitrary orthogonal basis for II. To get such a basis, we apply the Gram-Schmidt
process to the basis uy, uo:

Vv,

Vi = up = (1707_1)7
<UQ,V1> -2
= — =(1,-1 ——(1,0,—-1) = (2,—1,2).
Vo uy <V1,V1>Vl (1,-1,3) 5 (1,0,-1) = (2,-1,2)
Now
-2 9

Then o =u—p =(1,4,1). Finally, R(u) =p —o = (0,-5,2).

Problem 5 (25 pts.) Consider the vector space W of all polynomials of degree at most 3

. . . . . . 0
in variables x and y with real coefficients. Let D be a linear operator on W given by D(p) = 8_p
x
for any p € W. Find the Jordan canonical form of the operator D.
The vector space W is 10-dimensional. It has a basis of monomials: 1,xz,y, 22, zy, y%, 23, 22y, zy?, v°.

Note that D(z™y*) = ma™ 1y* if m > 0 and D(z™y*) = 0 otherwise. It follows that the operator
D* maps each monomial to zero, which implies that this operator is identically zero. As a consequence,
0 is the only eigenvalue of the operator D.

To determine the Jordan canonical form of D, we need to determine the null-spaces of its iter-
ations. Indeed, dim N/ (D) is the total number of Jordan blocks in the Jordan canonical form of D.
Next, dim N'(D?) — dim N'(D) is the number of Jordan blocks of dimensions at least 2 x 2. Further,
dim NV(D?) — dim V' (D?) is the number of Jordan blocks of dimensions at least 3 x 3, and so on. ..



The null-space N (D) is 4-dimensional, it is spanned by 1,y,%2%,y3. The null-space N(D?) is
7-dimensional, it is spanned by 1,y,v%, y3, 2, zy, 24%2. The null-space N'(D?) is 9-dimensional, it is
spanned by 1,y,32,v%, x, vy, xy?, 22, 2%y. The null-space N'(D*) is the entire 10-dimensional space W .
It follows that the Jordan canonical form of D contains one Jordan block of dimensions 1 x 1, 2 x 2,
3 x 3, and 4 x 4:

00 0O0O0OO0OO0OO0O®OO@O
001 0O0O0O0OO0GO0OO
00 0O0O0OO0OO0OO0O®O0O@O
00 001O0O0O0O0OOQO
00 00O0O1O0O0TO0OP
00 00O0OO0OO0OO0OTQO0O@
00 00O0OO0OO0O1QO00QO0
00 0O0O0OO0OO0OO0OT10Q0
00 0O0O0OO0OO0OO0OTO0T1
00 0O0O0OO0OO0OO0O®O0O@O

Bonus Problem 6 (15 pts.) An upper triangular matrix is called unipotent if all
diagonal entries are equal to 1. Prove that the inverse of a unipotent matrix is also unipotent.

Let U denote the class of elementary row operations that add a scalar multiple of row #i to row
#7, where ¢ and j satisfy j < i. It is easy to see that such an operation transforms a unipotent matrix
into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in row echelon form) can be converted
into the identity matrix I (which is its reduced row echelon form) by applying only operations from
the class Y. Now the same sequence of elementary row operations converts I into the inverse matrix
A~'. Since the identity matrix is unipotent, so is A7



