Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial $p(x)$ such that $p(-1)=p(3)=6$ and $p^{\prime}(2)=p(1)$.

Let $p(x)=a+b x+c x^{2}$. Then $p(-1)=a-b+c, p(1)=a+b+c$, and $p(3)=a+3 b+9 c$. Also, $p^{\prime}(x)=b+2 c x$ so that $p^{\prime}(2)=b+4 c$. The coefficients a, b, and c are to be chosen so that

$$
\left\{\begin{array} { l }
{ a - b + c = 6 , } \\
{ a + 3 b + 9 c = 6 , } \\
{ b + 4 c = a + b + c }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a-b+c=6, \\
a+3 b+9 c=6, \\
a-3 c=0 .
\end{array}\right.\right.
$$

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row echelon form using elementary row operations:

$$
\begin{aligned}
\left(\begin{array}{rrr|r}
1 & -1 & 1 & 6 \\
1 & 3 & 9 & 6 \\
1 & 0 & -3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
1 & -1 & 1 & 6 \\
1 & 3 & 9 & 6
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & -1 & 4 & 6 \\
1 & 3 & 9 & 6
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & -1 & 4 & 6 \\
0 & 3 & 12 & 6
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & -1 & 4 & 6 \\
0 & 0 & 24 & 24
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & -1 & 4 & 6 \\
0 & 0 & 1 & 1
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & 1 & -4 & -6 \\
0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

We obtain that the system has a unique solution: $a=3, b=-2$, and $c=1$. Thus $p(x)=x^{2}-2 x+3$.

Problem $2\left(20\right.$ pts.) Consider a linear transformation $L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}+x_{3}+x_{5}, 2 x_{1}-x_{2}+x_{4}\right) .
$$

Find a basis for the null-space of L, then extend it to a basis for \mathbb{R}^{5}.
The null-space $\mathcal{N}(L)$ consists of all vectors $\mathbf{x} \in \mathbb{R}^{5}$ such that $L(\mathbf{x})=\mathbf{0}$. This is the solution set of the following systems of linear equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}+x_{3}+x_{5}=0 \\
2 x_{1}-x_{2}+x_{4}=0
\end{array}\right. \\
\Longleftrightarrow & \left\{\begin{array} { l }
{ x _ { 1 } + x _ { 3 } + x _ { 5 } = 0 } \\
{ - x _ { 2 } - 2 x _ { 3 } + x _ { 4 } - 2 x _ { 5 } = 0 } \\
{ x _ { 1 } + x _ { 3 } + x _ { 5 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } - x _ { 4 } + 2 x _ { 5 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=-x_{3}-x_{5} \\
x_{2}=-2 x_{3}+x_{4}-2 x_{5}
\end{array}\right.\right.
\end{aligned}
$$

The general solution of the system is

$$
\mathbf{x}=\left(-t_{1}-t_{3},-2 t_{1}+t_{2}-2 t_{3}, t_{1}, t_{2}, t_{3}\right)=t_{1}(-1,-2,1,0,0)+t_{2}(0,1,0,1,0)+t_{3}(-1,-2,0,0,1),
$$

where t_{1}, t_{2}, t_{3} are arbitrary real numbers. We obtain that the null-space $\mathcal{N}(L)$ is spanned by vectors $\mathbf{v}_{1}=(-1,-2,1,0,0), \mathbf{v}_{2}=(0,1,0,1,0)$, and $\mathbf{v}_{3}=(-1,-2,0,0,1)$. The last three coordinates of these vectors form the standard basis for \mathbb{R}^{3}. It follows that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent. Hence they form a basis for $\mathcal{N}(L)$.

To extend the basis for $\mathcal{N}(L)$ to a basis for \mathbb{R}^{5}, we need two more vectors. We can use two vectors from the standard basis. For example, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}$ form a basis for \mathbb{R}^{5}. To verify this, we show that a 5×5 matrix with these vectors as columns has a nonzero determinant:

$$
\left|\begin{array}{rrrrr}
-1 & 0 & -1 & 1 & 0 \\
-2 & 1 & -2 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right|=\left|\begin{array}{rrrrr}
1 & 0 & -1 & 0 & -1 \\
0 & 1 & -2 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right|=1
$$

Problem 3 (20 pts.) Let $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(1,0,1)$. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator on \mathbb{R}^{3} such that $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}, T\left(\mathbf{v}_{2}\right)=\mathbf{v}_{3}, T\left(\mathbf{v}_{3}\right)=\mathbf{v}_{1}$. Find the matrix of the operator T relative to the standard basis.

Let U be a 3×3 matrix such that its columns are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$:

$$
U=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

To determine whether $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}, we find the determinant of U :

$$
\operatorname{det} U=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right|=\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-1 .
$$

Since $\operatorname{det} U \neq 0$, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent. Therefore they form a basis for \mathbb{R}^{3}. It follows that the operator T is defined well and uniquely.

The matrix of the operator T relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is

$$
B=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Since the matrix U is the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis, the matrix of T relative to the standard basis is $A=U B U^{-1}$.

To find the inverse U^{-1}, we merge the matrix U with the identity matrix I into one 3×6 matrix and apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I will be converted into U^{-1} :

$$
\begin{aligned}
& (U \mid I)=\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & -1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|rrr}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & -1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 1 & 1 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & -1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\rightarrow\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right)=\left(I \mid U^{-1}\right)
$$

Thus

$$
\begin{aligned}
A & =U B U^{-1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
2 & -1 & -1
\end{array}\right) .
\end{aligned}
$$

Problem $4\left(20 \mathrm{pts}\right.$.) Let $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the operator of orthogonal reflection in the plane Π spanned by vectors $\mathbf{u}_{1}=(1,0,-1)$ and $\mathbf{u}_{2}=(1,-1,3)$. Find the image of the vector $\mathbf{u}=(2,3,4)$ under this operator.

By definition of the orthogonal reflection, $R(\mathbf{x})=\mathbf{x}$ for any vector $\mathbf{x} \in \Pi$ and $R(\mathbf{y})=-\mathbf{y}$ for any vector \mathbf{y} orthogonal to the plane Π. The vector \mathbf{u} is uniquely decomposed as $\mathbf{u}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \in \Pi^{\perp}$. Then $R(\mathbf{u})=R(\mathbf{p}+\mathbf{o})=R(\mathbf{p})+R(\mathbf{o})=\mathbf{p}-\mathbf{o}$.

The component \mathbf{p} is the orthogonal projection of the vector \mathbf{u} onto the plane Π. We can compute it using the formula

$$
\mathbf{p}=\frac{\left\langle\mathbf{u}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{u}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

in which $\mathbf{v}_{1}, \mathbf{v}_{2}$ is an arbitrary orthogonal basis for Π. To get such a basis, we apply the Gram-Schmidt process to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1}=(1,0,-1) \\
& \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(1,-1,3)-\frac{-2}{2}(1,0,-1)=(2,-1,2)
\end{aligned}
$$

Now

$$
\mathbf{p}=\frac{-2}{2}(1,0,-1)+\frac{9}{9}(2,-1,2)=(1,-1,3) .
$$

Then $\mathbf{o}=\mathbf{u}-\mathbf{p}=(1,4,1)$. Finally, $R(\mathbf{u})=\mathbf{p}-\mathbf{o}=(0,-5,2)$.

Problem 5 (25 pts.) Consider the vector space W of all polynomials of degree at most 3 in variables x and y with real coefficients. Let D be a linear operator on W given by $D(p)=\frac{\partial p}{\partial x}$ for any $p \in W$. Find the Jordan canonical form of the operator D.

The vector space W is 10 -dimensional. It has a basis of monomials: $1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}$.
Note that $D\left(x^{m} y^{k}\right)=m x^{m-1} y^{k}$ if $m>0$ and $D\left(x^{m} y^{k}\right)=0$ otherwise. It follows that the operator D^{4} maps each monomial to zero, which implies that this operator is identically zero. As a consequence, 0 is the only eigenvalue of the operator D.

To determine the Jordan canonical form of D, we need to determine the null-spaces of its iterations. Indeed, $\operatorname{dim} \mathcal{N}(D)$ is the total number of Jordan blocks in the Jordan canonical form of D. Next, $\operatorname{dim} \mathcal{N}\left(D^{2}\right)-\operatorname{dim} \mathcal{N}(D)$ is the number of Jordan blocks of dimensions at least 2×2. Further, $\operatorname{dim} \mathcal{N}\left(D^{3}\right)-\operatorname{dim} \mathcal{N}\left(D^{2}\right)$ is the number of Jordan blocks of dimensions at least 3×3, and so on...

The null-space $\mathcal{N}(D)$ is 4 -dimensional, it is spanned by $1, y, y^{2}, y^{3}$. The null-space $\mathcal{N}\left(D^{2}\right)$ is 7 -dimensional, it is spanned by $1, y, y^{2}, y^{3}, x, x y, x y^{2}$. The null-space $\mathcal{N}\left(D^{3}\right)$ is 9 -dimensional, it is spanned by $1, y, y^{2}, y^{3}, x, x y, x y^{2}, x^{2}, x^{2} y$. The null-space $\mathcal{N}\left(D^{4}\right)$ is the entire 10 -dimensional space W. It follows that the Jordan canonical form of D contains one Jordan block of dimensions $1 \times 1,2 \times 2$, 3×3, and 4×4 :

$$
\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Bonus Problem 6 (15 pts.) An upper triangular matrix is called unipotent if all diagonal entries are equal to 1 . Prove that the inverse of a unipotent matrix is also unipotent.

Let \mathcal{U} denote the class of elementary row operations that add a scalar multiple of row $\# i$ to row $\# j$, where i and j satisfy $j<i$. It is easy to see that such an operation transforms a unipotent matrix into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in row echelon form) can be converted into the identity matrix I (which is its reduced row echelon form) by applying only operations from the class \mathcal{U}. Now the same sequence of elementary row operations converts I into the inverse matrix A^{-1}. Since the identity matrix is unipotent, so is A^{-1}.

