Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial p(x) such that p(-1) = p(3) = 6 and p'(2) = p(1).

Let $p(x) = a + bx + cx^2$. Then p(-1) = a - b + c, p(1) = a + b + c, and p(3) = a + 3b + 9c. Also, p'(x) = b + 2cx so that p'(2) = b + 4c. The coefficients a, b, and c are to be chosen so that

$$\begin{cases} a-b+c = 6, \\ a+3b+9c = 6, \\ b+4c = a+b+c \end{cases} \iff \begin{cases} a-b+c = 6, \\ a+3b+9c = 6, \\ a-3c = 0. \end{cases}$$

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row echelon form using elementary row operations:

$$\begin{pmatrix} 1 & -1 & 1 & | & 6 \\ 1 & 3 & 9 & | & 6 \\ 1 & 0 & -3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 1 & -1 & 1 & | & 6 \\ 1 & 3 & 9 & | & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & -1 & 4 & | & 6 \\ 1 & 3 & 9 & | & 6 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & -1 & 4 & | & 6 \\ 0 & 0 & 24 & | & 24 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & -1 & 4 & | & 6 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & -1 & 4 & | & 6 \\ 0 & 0 & 24 & | & 24 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & -1 & 4 & | & 6 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$

We obtain that the system has a unique solution: a = 3, b = -2, and c = 1. Thus $p(x) = x^2 - 2x + 3$.

Problem 2 (20 pts.) Consider a linear transformation $L : \mathbb{R}^5 \to \mathbb{R}^2$ given by

$$L(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_3 + x_5, 2x_1 - x_2 + x_4).$$

Find a basis for the null-space of L, then extend it to a basis for \mathbb{R}^5 .

The null-space $\mathcal{N}(L)$ consists of all vectors $\mathbf{x} \in \mathbb{R}^5$ such that $L(\mathbf{x}) = \mathbf{0}$. This is the solution set of the following systems of linear equations:

$$\begin{cases} x_1 + x_3 + x_5 = 0\\ 2x_1 - x_2 + x_4 = 0 \end{cases} \iff \begin{cases} x_1 + x_3 + x_5 = 0\\ -x_2 - 2x_3 + x_4 - 2x_5 = 0 \end{cases}$$
$$\iff \begin{cases} x_1 + x_3 + x_5 = 0\\ x_2 + 2x_3 - x_4 + 2x_5 = 0 \end{cases} \iff \begin{cases} x_1 = -x_3 - x_5\\ x_2 = -2x_3 + x_4 - 2x_5 \end{cases}$$

The general solution of the system is

$$\mathbf{x} = (-t_1 - t_3, -2t_1 + t_2 - 2t_3, t_1, t_2, t_3) = t_1(-1, -2, 1, 0, 0) + t_2(0, 1, 0, 1, 0) + t_3(-1, -2, 0, 0, 1),$$

where t_1, t_2, t_3 are arbitrary real numbers. We obtain that the null-space $\mathcal{N}(L)$ is spanned by vectors $\mathbf{v}_1 = (-1, -2, 1, 0, 0), \mathbf{v}_2 = (0, 1, 0, 1, 0), \text{ and } \mathbf{v}_3 = (-1, -2, 0, 0, 1)$. The last three coordinates of these vectors form the standard basis for \mathbb{R}^3 . It follows that the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Hence they form a basis for $\mathcal{N}(L)$.

To extend the basis for $\mathcal{N}(L)$ to a basis for \mathbb{R}^5 , we need two more vectors. We can use two vectors from the standard basis. For example, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{e}_1, \mathbf{e}_2$ form a basis for \mathbb{R}^5 . To verify this, we show that a 5 × 5 matrix with these vectors as columns has a nonzero determinant:

-1	0	-1	1	0		1	0	-1	0	-1	
-2	1	-2	0	1		0	1	-2	1	-2	
1	0	0	0	0	=	0	0	1	0	0	= 1.
0	1	0	0	0		0	0	0	1	0	
0	0	1	0	0		0	0	0	0	1	

Problem 3 (20 pts.) Let $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, 1, 0)$, and $\mathbf{v}_3 = (1, 0, 1)$. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator on \mathbb{R}^3 such that $T(\mathbf{v}_1) = \mathbf{v}_2$, $T(\mathbf{v}_2) = \mathbf{v}_3$, $T(\mathbf{v}_3) = \mathbf{v}_1$. Find the matrix of the operator T relative to the standard basis.

Let U be a 3×3 matrix such that its columns are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$:

$$U = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

To determine whether $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is a basis for \mathbb{R}^3 , we find the determinant of U:

$$\det U = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{vmatrix} = -1.$$

Since det $U \neq 0$, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Therefore they form a basis for \mathbb{R}^3 . It follows that the operator T is defined well and uniquely.

The matrix of the operator T relative to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is

$$B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Since the matrix U is the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to the standard basis, the matrix of T relative to the standard basis is $A = UBU^{-1}$.

To find the inverse U^{-1} , we merge the matrix U with the identity matrix I into one 3×6 matrix and apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I will be converted into U^{-1} :

$$(U|I) = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 1 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & -1 & | & -1 & 1 & 0 \\ 1 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & -1 & | & -1 & 1 & 0 \\ 0 & -1 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & -1 & | & -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & -1 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & -1 & | & -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & -1 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & -1 & | & -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1 & 1 & 1 \\ 0 & -1 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & -1 & | & -1 & 1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 0 & -1 \\ 0 & 0 & 1 & | & 1 & -1 & 0 \end{pmatrix} = (I|U^{-1}).$$

Thus

$$A = UBU^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & -1 \end{pmatrix}.$$

Problem 4 (20 pts.) Let $R : \mathbb{R}^3 \to \mathbb{R}^3$ be the operator of orthogonal reflection in the plane Π spanned by vectors $\mathbf{u}_1 = (1, 0, -1)$ and $\mathbf{u}_2 = (1, -1, 3)$. Find the image of the vector $\mathbf{u} = (2, 3, 4)$ under this operator.

By definition of the orthogonal reflection, $R(\mathbf{x}) = \mathbf{x}$ for any vector $\mathbf{x} \in \Pi$ and $R(\mathbf{y}) = -\mathbf{y}$ for any vector \mathbf{y} orthogonal to the plane Π . The vector \mathbf{u} is uniquely decomposed as $\mathbf{u} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \in \Pi^{\perp}$. Then $R(\mathbf{u}) = R(\mathbf{p} + \mathbf{o}) = R(\mathbf{p}) + R(\mathbf{o}) = \mathbf{p} - \mathbf{o}$.

The component \mathbf{p} is the orthogonal projection of the vector \mathbf{u} onto the plane Π . We can compute it using the formula

$$\mathbf{p} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2,$$

in which $\mathbf{v}_1, \mathbf{v}_2$ is an arbitrary orthogonal basis for Π . To get such a basis, we apply the Gram-Schmidt process to the basis $\mathbf{u}_1, \mathbf{u}_2$:

$$\mathbf{v}_1 = \mathbf{u}_1 = (1, 0, -1),$$

$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (1, -1, 3) - \frac{-2}{2} (1, 0, -1) = (2, -1, 2).$$

Now

$$\mathbf{p} = \frac{-2}{2}(1,0,-1) + \frac{9}{9}(2,-1,2) = (1,-1,3).$$

Then $\mathbf{o} = \mathbf{u} - \mathbf{p} = (1, 4, 1)$. Finally, $R(\mathbf{u}) = \mathbf{p} - \mathbf{o} = (0, -5, 2)$.

Problem 5 (25 pts.) Consider the vector space W of all polynomials of degree at most 3 in variables x and y with real coefficients. Let D be a linear operator on W given by $D(p) = \frac{\partial p}{\partial x}$ for any $p \in W$. Find the Jordan canonical form of the operator D.

The vector space W is 10-dimensional. It has a basis of monomials: $1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3$. Note that $D(x^m y^k) = mx^{m-1}y^k$ if m > 0 and $D(x^m y^k) = 0$ otherwise. It follows that the operator D^4 maps each monomial to zero, which implies that this operator is identically zero. As a consequence, 0 is the only eigenvalue of the operator D.

To determine the Jordan canonical form of D, we need to determine the null-spaces of its iterations. Indeed, dim $\mathcal{N}(D)$ is the total number of Jordan blocks in the Jordan canonical form of D. Next, dim $\mathcal{N}(D^2) - \dim \mathcal{N}(D)$ is the number of Jordan blocks of dimensions at least 2×2 . Further, dim $\mathcal{N}(D^3) - \dim \mathcal{N}(D^2)$ is the number of Jordan blocks of dimensions at least 3×3 , and so on... The null-space $\mathcal{N}(D)$ is 4-dimensional, it is spanned by $1, y, y^2, y^3$. The null-space $\mathcal{N}(D^2)$ is 7-dimensional, it is spanned by $1, y, y^2, y^3, x, xy, xy^2$. The null-space $\mathcal{N}(D^3)$ is 9-dimensional, it is spanned by $1, y, y^2, y^3, x, xy, xy^2, x^2, x^2y$. The null-space $\mathcal{N}(D^4)$ is the entire 10-dimensional space W. It follows that the Jordan canonical form of D contains one Jordan block of dimensions $1 \times 1, 2 \times 2, 3 \times 3$, and 4×4 :

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0/
	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Bonus Problem 6 (15 pts.) An upper triangular matrix is called unipotent if all diagonal entries are equal to 1. Prove that the inverse of a unipotent matrix is also unipotent.

Let \mathcal{U} denote the class of elementary row operations that add a scalar multiple of row #i to row #j, where *i* and *j* satisfy j < i. It is easy to see that such an operation transforms a unipotent matrix into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in row echelon form) can be converted into the identity matrix I (which is its reduced row echelon form) by applying only operations from the class \mathcal{U} . Now the same sequence of elementary row operations converts I into the inverse matrix A^{-1} . Since the identity matrix is unipotent, so is A^{-1} .