
MATH 423–200/500 Spring 2012

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial p(x) such that p(−1) = p(3) = 6 and
p′(2) = p(1).

Let p(x) = a+ bx+ cx2. Then p(−1) = a− b+ c, p(1) = a+ b+ c, and p(3) = a+ 3b+ 9c. Also,
p′(x) = b+ 2cx so that p′(2) = b+ 4c. The coefficients a, b, and c are to be chosen so that







a− b+ c = 6,
a+ 3b+ 9c = 6,
b+ 4c = a+ b+ c

⇐⇒







a− b+ c = 6,
a+ 3b+ 9c = 6,
a− 3c = 0.

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row
echelon form using elementary row operations:





1 −1 1 6
1 3 9 6
1 0 −3 0



 →





1 0 −3 0
1 −1 1 6
1 3 9 6



 →





1 0 −3 0
0 −1 4 6
1 3 9 6





→





1 0 −3 0
0 −1 4 6
0 3 12 6



 →





1 0 −3 0
0 −1 4 6
0 0 24 24



 →





1 0 −3 0
0 −1 4 6
0 0 1 1





→





1 0 −3 0
0 1 −4 −6
0 0 1 1



 →





1 0 −3 0
0 1 0 −2
0 0 1 1



 →





1 0 0 3
0 1 0 −2
0 0 1 1



 .

We obtain that the system has a unique solution: a = 3, b = −2, and c = 1. Thus p(x) = x2 − 2x+3.

Problem 2 (20 pts.) Consider a linear transformation L : R5 → R
2 given by

L(x1, x2, x3, x4, x5) = (x1 + x3 + x5, 2x1 − x2 + x4).

Find a basis for the null-space of L, then extend it to a basis for R5.

The null-space N (L) consists of all vectors x ∈ R
5 such that L(x) = 0. This is the solution set of

the following systems of linear equations:

{

x1 + x3 + x5 = 0
2x1 − x2 + x4 = 0

⇐⇒

{

x1 + x3 + x5 = 0
−x2 − 2x3 + x4 − 2x5 = 0

⇐⇒

{

x1 + x3 + x5 = 0
x2 + 2x3 − x4 + 2x5 = 0

⇐⇒

{

x1 = −x3 − x5
x2 = −2x3 + x4 − 2x5

The general solution of the system is

x = (−t1 − t3,−2t1 + t2 − 2t3, t1, t2, t3) = t1(−1,−2, 1, 0, 0) + t2(0, 1, 0, 1, 0) + t3(−1,−2, 0, 0, 1),
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where t1, t2, t3 are arbitrary real numbers. We obtain that the null-space N (L) is spanned by vectors
v1 = (−1,−2, 1, 0, 0), v2 = (0, 1, 0, 1, 0), and v3 = (−1,−2, 0, 0, 1). The last three coordinates of these
vectors form the standard basis for R3. It follows that the vectors v1,v2,v3 are linearly independent.
Hence they form a basis for N (L).

To extend the basis for N (L) to a basis for R5, we need two more vectors. We can use two vectors
from the standard basis. For example, the vectors v1,v2,v3, e1, e2 form a basis for R5. To verify this,
we show that a 5× 5 matrix with these vectors as columns has a nonzero determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 −1 1 0
−2 1 −2 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −1 0 −1
0 1 −2 1 −2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1.

Problem 3 (20 pts.) Let v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 1). Let T : R3 → R
3

be a linear operator on R
3 such that T (v1) = v2, T (v2) = v3, T (v3) = v1. Find the matrix of

the operator T relative to the standard basis.

Let U be a 3× 3 matrix such that its columns are vectors v1,v2,v3:

U =





1 1 1
1 1 0
1 0 1



 .

To determine whether v1,v2,v3 is a basis for R3, we find the determinant of U :

detU =

∣

∣

∣

∣

∣

∣

1 1 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

0 0 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1.

Since detU 6= 0, the vectors v1,v2,v3 are linearly independent. Therefore they form a basis for R
3.

It follows that the operator T is defined well and uniquely.
The matrix of the operator T relative to the basis v1,v2,v3 is

B =





0 0 1
1 0 0
0 1 0



 .

Since the matrix U is the transition matrix from v1,v2,v3 to the standard basis, the matrix of T
relative to the standard basis is A = UBU−1.

To find the inverse U−1, we merge the matrix U with the identity matrix I into one 3× 6 matrix
and apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half
I will be converted into U−1:

(U |I) =





1 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 0 −1 0 1





→





1 1 1 1 0 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 1 0 0 1 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 0 0 −1 1 1
0 −1 0 −1 0 1
0 0 −1 −1 1 0




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→





1 0 0 −1 1 1
0 1 0 1 0 −1
0 0 1 1 −1 0



 = (I|U−1).

Thus

A = UBU−1 =





1 1 1
1 1 0
1 0 1









0 0 1
1 0 0
0 1 0









−1 1 1
1 0 −1
1 −1 0





=





1 1 1
1 0 1
0 1 1









−1 1 1
1 0 −1
1 −1 0



 =





1 0 0
0 0 1
2 −1 −1



 .

Problem 4 (20 pts.) Let R : R3 → R
3 be the operator of orthogonal reflection in the

plane Π spanned by vectors u1 = (1, 0,−1) and u2 = (1,−1, 3). Find the image of the vector
u = (2, 3, 4) under this operator.

By definition of the orthogonal reflection, R(x) = x for any vector x ∈ Π and R(y) = −y for any
vector y orthogonal to the plane Π. The vector u is uniquely decomposed as u = p+ o, where p ∈ Π
and o ∈ Π⊥. Then R(u) = R(p+ o) = R(p) +R(o) = p− o.

The component p is the orthogonal projection of the vector u onto the plane Π. We can compute
it using the formula

p =
〈u,v1〉

〈v1,v1〉
v1 +

〈u,v2〉

〈v2,v2〉
v2,

in which v1,v2 is an arbitrary orthogonal basis for Π. To get such a basis, we apply the Gram-Schmidt
process to the basis u1,u2:

v1 = u1 = (1, 0,−1),

v2 = u2 −
〈u2,v1〉

〈v1,v1〉
v1 = (1,−1, 3) −

−2

2
(1, 0,−1) = (2,−1, 2).

Now

p =
−2

2
(1, 0,−1) +

9

9
(2,−1, 2) = (1,−1, 3).

Then o = u− p = (1, 4, 1). Finally, R(u) = p− o = (0,−5, 2).

Problem 5 (25 pts.) Consider the vector space W of all polynomials of degree at most 3

in variables x and y with real coefficients. Let D be a linear operator on W given by D(p) =
∂p

∂x
for any p ∈ W . Find the Jordan canonical form of the operator D.

The vector spaceW is 10-dimensional. It has a basis of monomials: 1, x, y, x2, xy, y2, x3, x2y, xy2, y3.
Note that D(xmyk) = mxm−1yk if m > 0 and D(xmyk) = 0 otherwise. It follows that the operator

D4 maps each monomial to zero, which implies that this operator is identically zero. As a consequence,
0 is the only eigenvalue of the operator D.

To determine the Jordan canonical form of D, we need to determine the null-spaces of its iter-
ations. Indeed, dimN (D) is the total number of Jordan blocks in the Jordan canonical form of D.
Next, dimN (D2) − dimN (D) is the number of Jordan blocks of dimensions at least 2 × 2. Further,
dimN (D3)− dimN (D2) is the number of Jordan blocks of dimensions at least 3× 3, and so on. . .
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The null-space N (D) is 4-dimensional, it is spanned by 1, y, y2, y3. The null-space N (D2) is
7-dimensional, it is spanned by 1, y, y2, y3, x, xy, xy2. The null-space N (D3) is 9-dimensional, it is
spanned by 1, y, y2, y3, x, xy, xy2, x2, x2y. The null-space N (D4) is the entire 10-dimensional space W .
It follows that the Jordan canonical form of D contains one Jordan block of dimensions 1× 1, 2× 2,
3× 3, and 4× 4:

































0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

































.

Bonus Problem 6 (15 pts.) An upper triangular matrix is called unipotent if all
diagonal entries are equal to 1. Prove that the inverse of a unipotent matrix is also unipotent.

Let U denote the class of elementary row operations that add a scalar multiple of row #i to row
#j, where i and j satisfy j < i. It is easy to see that such an operation transforms a unipotent matrix
into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in row echelon form) can be converted
into the identity matrix I (which is its reduced row echelon form) by applying only operations from
the class U . Now the same sequence of elementary row operations converts I into the inverse matrix
A−1. Since the identity matrix is unipotent, so is A−1.
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