Final exam (with solutions)

Problem 1 ($\mathbf{1 5}$ pts.) Find a quadratic polynomial $p(x)$ such that $p(1)=2, p(2)=5$, and $p(3)=2 p(-2)$.

Solution: $\quad p(x)=x^{2}+1$.

Problem $2\left(20\right.$ pts.) Let V and W be subspaces of the vector space \mathbb{R}^{n} such that V is a proper subset of W, i.e., $V \subset W$ and $V \neq W$. Prove that $\operatorname{dim} V<\operatorname{dim} W$.

Any linearly independent set in a vector space can be extended to a basis. Since the vector space \mathbb{R}^{n} is finite-dimensional, it does not admit infinitely many linearly independent vectors. Clearly, the same is true for the subspaces V and W. It follows that V and W are also finite-dimensional.

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be a basis for V. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent in W since they are linearly independent in V. Therefore we can extend this collection of vectors to a basis for W by adding some vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. As $V \neq W$, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ alone do not span W. Hence we do need to add some vectors, i.e., $m \geq 1$. Thus $\operatorname{dim} V=k$ and $\operatorname{dim} W=k+m>k$.

Problem 3 (20 pts.) The vectors $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,0,1)$, and $\mathbf{v}_{3}=(1,2,1)$ form a basis for \mathbb{R}^{3}. The vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, and $\mathbf{w}_{3}=(1,1,1)$ form another basis for \mathbb{R}^{3}. Find the transition matrix that changes coordinates from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$.

Solution: $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)^{-1}\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1\end{array}\right)=\left(\begin{array}{rrr}-1 & -1 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 0\end{array}\right)$.
Problem $4(20 \mathrm{pts}$.$) \quad Let V$ be a subspace of \mathbb{R}^{4} spanned by vectors $\mathbf{x}_{1}=(1,1,1,1)$, $\mathbf{x}_{2}=(-1,1,2,2)$, and $\mathbf{x}_{3}=(-3,1,5,1)$.
(i) Find the orthogonal projection of the vector $\mathbf{y}=(0,0,24,0)$ onto the subspace V.
(ii) Find the distance from \mathbf{y} to the subspace V.

Solution: Orthogonal projection: $\mathbf{p}=(-2,6,22,-2)$. Distance from \mathbf{y} to $V:\|\mathbf{y}-\mathbf{p}\|=$ $4 \sqrt{3}$.

Problem 5 (25 pts.) Let $A=\left(\begin{array}{rrr}2 & 0 & -2 \\ -1 & 1 & 2 \\ 1 & 0 & -1\end{array}\right)$.
(i) Determine whether the matrix A is diagonalizable.
(ii) If A is diagonalizable, find a basis for \mathbb{R}^{3} consisting of eigenvectors of A. If A is not diagonalizable, find the Jordan canonical form of A.

Solution: A is diagonalizable. Basis of eigenvectors: $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(2,0,1)$, $\mathbf{v}_{3}=(0,1,0)$.

Problem 5^{\prime} (25 pts.) Let $A=\left(\begin{array}{rrrr}1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0\end{array}\right)$.
(i) Determine whether the matrix A is diagonalizable.
(ii) If A is diagonalizable, find a basis for \mathbb{R}^{4} consisting of eigenvectors of A. If A is not diagonalizable, find the Jordan canonical form of A.

Solution: A is not diagonalizable. The Jordan canonical form: $\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Bonus Problem 6' ${ }^{\prime}$ (15 pts.) (i) Prove that every normal matrix B can be represented as a product $B=U R$, where the matrix R is Hermitian and the matrix U is unitary.

First we consider the case when B is diagonal, $B=\operatorname{diag}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. Any of the complex numbers z_{k} can be represented as a product $z_{k}=r_{k} u_{k}$, where r_{k} is real and $\left|u_{k}\right|=1$. We let $R_{1}=\operatorname{diag}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and $U_{1}=\operatorname{diag}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. By construction, R_{1} is Hermitian, U_{1} is unitary, and $U_{1} R_{1}=B$.

Now consider the general case. If an $n \times n$ matrix B is normal then there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of B. It follows that $B=Q D Q^{-1}$, where Q is a unitary matrix (transition matrix from the orthonormal basis of eigenvectors of B to the standard basis) and D is diagonal. By the above, $D=U_{1} R_{1}$, where R_{1} is an Hermitian matrix and U_{1} is a unitary matrix. Let $R=Q R_{1} Q^{-1}$ and $U=Q U_{1} Q^{-1}$. Then $U R=Q U_{1} Q^{-1} Q R_{1} Q^{-1}=Q U_{1} R_{1} Q^{-1}=Q D Q^{-1}=B$. Since Q is unitary, we have $R^{*}=\left(Q R_{1} Q^{-1}\right)^{*}=\left(Q R_{1} Q^{*}\right)^{*}=\left(Q^{*}\right)^{*} R_{1}^{*} Q^{*}=Q R_{1} Q^{*}=Q R_{1} Q^{-1}=R$ so that the matrix R is Hermitian. Similarly, $U^{*}=Q U_{1}^{*} Q^{-1}=Q U_{1}^{-1} Q^{-1}=\left(Q U_{1} Q^{-1}\right)^{-1}=U^{-1}$ so that the matrix U is unitary.
(ii) Find a symmetric matrix R_{0} (with real entries) and an orthogonal matrix U_{0} of the same dimensions such that $U_{0} R_{0}$ is not a normal matrix.

Solution: $\quad R_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), \quad U_{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Suppose $B_{0}=U_{0} R_{0}$, where R_{0} is a symmetric matrix and U_{0} is an orthogonal matrix. Then

$$
\begin{aligned}
& B_{0}^{*} B_{0}=\left(U_{0} R_{0}\right)^{*} U_{0} R_{0}=R_{0}^{*} U_{0}^{*} U_{0} R_{0}=R_{0} U_{0}^{-1} U_{0} R_{0}=R_{0}^{2}, \\
& B_{0} B_{0}^{*}=U_{0} R_{0}\left(U_{0} R_{0}\right)^{*}=U_{0} R_{0} R_{0}^{*} U_{0}^{*}=U_{0} R_{0}^{2} U_{0}^{-1} .
\end{aligned}
$$

Hence B_{0} is normal if and only if U_{0} commutes with R_{0}^{2}.

