
MATH 423–500/200 May 7, 2012

Final exam (with solutions)

Problem 1 (15 pts.) Find a quadratic polynomial p(x) such that p(1) = 2, p(2) = 5,
and p(3) = 2p(−2).

Solution: p(x) = x2 + 1.

Problem 2 (20 pts.) Let V and W be subspaces of the vector space R
n such that V is

a proper subset of W , i.e., V ⊂ W and V 6= W . Prove that dim V < dim W .

Any linearly independent set in a vector space can be extended to a basis. Since the vector space
R

n is finite-dimensional, it does not admit infinitely many linearly independent vectors. Clearly, the
same is true for the subspaces V and W . It follows that V and W are also finite-dimensional.

Let v1,v2, . . . ,vk be a basis for V . The vectors v1,v2, . . . ,vk are linearly independent in W since
they are linearly independent in V . Therefore we can extend this collection of vectors to a basis for
W by adding some vectors w1, . . . ,wm. As V 6= W , the vectors v1,v2, . . . ,vk alone do not span W .
Hence we do need to add some vectors, i.e., m ≥ 1. Thus dimV = k and dimW = k + m > k.

Problem 3 (20 pts.) The vectors v1 = (1, 2, 3), v2 = (1, 0, 1), and v3 = (1, 2, 1) form a
basis for R

3. The vectors w1 = (1, 1, 0), w2 = (0, 1, 1), and w3 = (1, 1, 1) form another basis for
R

3. Find the transition matrix that changes coordinates from the basis v1,v2,v3 to the basis
w1,w2,w3.

Solution:





1 0 1
1 1 1
0 1 1





−1 



1 1 1
2 0 2
3 1 1



 =





−1 −1 1
1 −1 1
2 2 0



.

Problem 4 (20 pts.) Let V be a subspace of R
4 spanned by vectors x1 = (1, 1, 1, 1),

x2 = (−1, 1, 2, 2), and x3 = (−3, 1, 5, 1).

(i) Find the orthogonal projection of the vector y = (0, 0, 24, 0) onto the subspace V .
(ii) Find the distance from y to the subspace V .

Solution: Orthogonal projection: p = (−2, 6, 22,−2). Distance from y to V : ‖y − p‖ =
4
√

3.

Problem 5 (25 pts.) Let A =





2 0 −2
−1 1 2

1 0 −1



.

(i) Determine whether the matrix A is diagonalizable.
(ii) If A is diagonalizable, find a basis for R

3 consisting of eigenvectors of A. If A is not
diagonalizable, find the Jordan canonical form of A.

Solution: A is diagonalizable. Basis of eigenvectors: v1 = (1,−1, 1), v2 = (2, 0, 1),
v3 = (0, 1, 0).
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Problem 5′ (25 pts.) Let A =









1 1 0 1
1 1 0 1
0 0 0 0
0 −1 1 0









.

(i) Determine whether the matrix A is diagonalizable.
(ii) If A is diagonalizable, find a basis for R

4 consisting of eigenvectors of A. If A is not
diagonalizable, find the Jordan canonical form of A.

Solution: A is not diagonalizable. The Jordan canonical form:









0 0 0 0
0 0 0 0
0 0 1 1
0 0 0 1









.

Bonus Problem 6′ (15 pts.) (i) Prove that every normal matrix B can be represented
as a product B = UR, where the matrix R is Hermitian and the matrix U is unitary.

First we consider the case when B is diagonal, B = diag(z1, z2, . . . , zn). Any of the complex
numbers zk can be represented as a product zk = rkuk, where rk is real and |uk| = 1. We let
R1 = diag(r1, r2, . . . , rn) and U1 = diag(u1, u2, . . . , un). By construction, R1 is Hermitian, U1 is
unitary, and U1R1 = B.

Now consider the general case. If an n × n matrix B is normal then there exists an orthonormal
basis for C

n consisting of eigenvectors of B. It follows that B = QDQ−1, where Q is a unitary matrix
(transition matrix from the orthonormal basis of eigenvectors of B to the standard basis) and D is
diagonal. By the above, D = U1R1, where R1 is an Hermitian matrix and U1 is a unitary matrix. Let
R = QR1Q

−1 and U = QU1Q
−1. Then UR = QU1Q

−1QR1Q
−1 = QU1R1Q

−1 = QDQ−1 = B. Since
Q is unitary, we have R∗ = (QR1Q

−1)∗ = (QR1Q
∗)∗ = (Q∗)∗R∗

1
Q∗ = QR1Q

∗ = QR1Q
−1 = R so that

the matrix R is Hermitian. Similarly, U∗ = QU∗

1
Q−1 = QU−1

1
Q−1 = (QU1Q

−1)−1 = U−1 so that the
matrix U is unitary.

(ii) Find a symmetric matrix R0 (with real entries) and an orthogonal matrix U0 of the
same dimensions such that U0R0 is not a normal matrix.

Solution: R0 =

(

1 0
0 2

)

, U0 =

(

0 1
1 0

)

.

Suppose B0 = U0R0, where R0 is a symmetric matrix and U0 is an orthogonal matrix. Then

B∗

0B0 = (U0R0)
∗U0R0 = R∗

0U
∗

0 U0R0 = R0U
−1

0
U0R0 = R2

0,

B0B
∗

0 = U0R0(U0R0)
∗ = U0R0R

∗

0U
∗

0 = U0R
2

0U
−1

0
.

Hence B0 is normal if and only if U0 commutes with R2
0
.
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