MATH 423
 Linear Algebra II

Lecture 1:

Classical vectors.
Vector space.

Classical vectors

Vector is a mathematical concept characterized by its magnitude and direction.

Scalar is a mathematical concept characterized by its magnitude and, possibly, sign.
Scalar is a real number (positive or negative).
Many physical quantities are vectors:

- force;
- displacement, velocity, acceleration;
- electric field, magnetic field.

Classical vectors: geometric approach

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Classical vectors: geometric approach

$\overrightarrow{A B}$ denotes a vector represented by the arrow with tip (endpoint) at B and tail (beginning) at A.
For any vector \mathbf{v} and a point A there is a unique point B such that $\overrightarrow{A B}=\mathbf{v}$.

Classical vectors: geometric approach

Geometric fact: if a quadrilateral $A B B^{\prime} A^{\prime}$ is a parallelogram then $\overrightarrow{A B}=\overrightarrow{A^{\prime} B^{\prime}}$. The converse holds if the points $A, B, A^{\prime}, B^{\prime}$ are not on the same line.

Classical vectors: geometric approach

If $\mathbf{v}=\overrightarrow{A B}$ then $\overrightarrow{B A}$ is called the negative vector of \mathbf{v} and denoted $-\mathbf{v}$. $\overrightarrow{A A}$ is called the zero vector and denoted $\mathbf{0}$.

Vector addition

Given vectors \mathbf{x} and \mathbf{y}, their sum $\mathbf{x}+\mathbf{y}$ is defined by the rule $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$.
$\xrightarrow{\text { That }}$ is, choose points $A, \xrightarrow{B C} C$ so that $\overrightarrow{A B}=\mathbf{x}$ and $\overrightarrow{B C}=\mathbf{y}$. Then $\mathbf{x}+\mathbf{y}=\overrightarrow{A C}$.

Vector subtraction

The difference of vectors \mathbf{x} and \mathbf{y} is defined as $\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y})$.

Properties of vector addition:

$$
\begin{aligned}
& (\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z}) \\
& \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x} \\
& \mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x} \\
& \mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}
\end{aligned}
$$

(associative law)
(commutative law)

Let $\overrightarrow{A B}=\mathbf{x}$. Then $\mathbf{x}+\mathbf{0}=\overrightarrow{A B}+\overrightarrow{B B}=\overrightarrow{A B}=\mathbf{x}$, $\mathbf{x}+(-\mathbf{x})=\overrightarrow{A B}+\overrightarrow{B A}=\overrightarrow{A A}=\mathbf{0}$.
Let $\overrightarrow{A B}=\mathbf{x}, \overrightarrow{B C}=\mathbf{y}$, and $\overrightarrow{C D}=\mathbf{z}$. Then $(\mathbf{x}+\mathbf{y})+\mathbf{z}=(\overrightarrow{A B}+\overrightarrow{B C})+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{C D}=\overrightarrow{A D}$, $\mathbf{x}+(\mathbf{y}+\mathbf{z})=\overrightarrow{A B}+(\overrightarrow{B C}+\overrightarrow{C D})=\overrightarrow{A B}+\overrightarrow{B D}=\overrightarrow{A D}$.

Parallelogram law

Let $\overrightarrow{A B}=\mathbf{x}, \overrightarrow{B C}=\mathbf{y}, \overrightarrow{A B^{\prime}}=\mathbf{y}$, and $\overrightarrow{B^{\prime} C^{\prime}}=\mathbf{x}$.
Then $\mathbf{x}+\mathbf{y}=\overrightarrow{A C}, \mathbf{y}+\mathbf{x}=\overrightarrow{A C^{\prime}}$.

Wrong picture!

Parallelogram law

Let $\overrightarrow{A B}=\mathbf{x}, \overrightarrow{B C}=\mathbf{y}, \overrightarrow{A B^{\prime}}=\mathbf{y}$, and $\overrightarrow{B^{\prime} C^{\prime}}=\mathbf{x}$.
Then $\mathbf{x}+\mathbf{y}=\overrightarrow{A C}, \mathbf{y}+\mathbf{x}=\overrightarrow{A C^{\prime}}$.

Right picture!

Scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r \mathbf{v}$ is a vector whose magnitude is $|r|$ times the magnitude of \mathbf{v}. The direction of $r \mathbf{v}$ coincides with that of \mathbf{v} if $r>0$. If $r<0$ then the directions of $r \mathbf{v}$ and \mathbf{v} are opposite.

$-\quad-2 v$

Scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r \mathbf{v}$ is a vector whose magnitude is $|r|$ times the magnitude of \mathbf{v}. The direction of $r \mathbf{v}$ coincides with that of \mathbf{v} if $r>0$. If $r<0$ then the directions of $r \mathbf{v}$ and \mathbf{v} are opposite.

Properties of scalar multiplication:
$r(s \mathbf{x})=(r s) \mathbf{x}$
(associative law)
$r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$
$(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$
$1 \mathbf{x}=\mathbf{x}$
$0 \mathrm{x}=\mathbf{0}$

Classical vectors: algebraic approach

An n-dimensional coordinate vector is an element of \mathbb{R}^{n}, i.e., an ordered list $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n real numbers. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and
$\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ be vectors, and $r \in \mathbb{R}$ be a scalar.
Vector sum: $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
Scalar multiple: $\quad r \mathbf{x}=\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right)$
Zero vector: $\quad \mathbf{0}=(0,0, \ldots, 0)$
Additive inverse: $\quad-\mathbf{y}=\left(-y_{1},-y_{2}, \ldots,-y_{n}\right)$
Vector difference:

$$
\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y})=\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right)
$$

Properties of vector addition and scalar multiplication:

$$
\begin{aligned}
& \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x} \\
& (\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z}) \\
& \mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x} \\
& \mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0} \\
& (r s) \mathbf{x}=r(s \mathbf{x}) \\
& r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y} \\
& (r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x} \\
& 1 \mathbf{x}=\mathbf{x} \\
& 0 \mathbf{x}=\mathbf{0} \\
& (-1) \mathbf{x}=-\mathbf{x}
\end{aligned}
$$

Cartesian coordinates: geometric meets algebraic

Cartesian coordinates allow us to identify a plane with \mathbb{R}^{2} (similarly, a line with \mathbb{R} and space with \mathbb{R}^{3}).
Once we specify an origin O, each point A is associated a position vector $\overrightarrow{O A}$. Conversely, every vector has a unique representative with tail at O.

Abstract vector space: informal description

Vector space $=$ linear space $=$ a set V of objects (called vectors) that can be added and scaled.

That is, for any $\mathbf{u}, \mathbf{v} \in V$ and $r \in \mathbb{R}$ expressions

$$
\begin{array}{ll}
\mathbf{u}+\mathbf{v} & \text { and } r \mathbf{u} \\
\hline
\end{array}
$$

should make sense.
Certain restrictions apply. For instance,

$$
\begin{aligned}
& \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
& 2 \mathbf{u}+3 \mathbf{u}=5 \mathbf{u}
\end{aligned}
$$

That is, we want the addition and scalar multiplication in V to be like those of the classical vectors.

Abstract vector space: definition

Vector space is a set V equipped with two operations $\alpha: V \times V \rightarrow V$ and $\mu: \mathbb{R} \times V \rightarrow V$ that have certain properties (listed below).

The operation α is called addition. For any $\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u}+\mathbf{v}$.

The operation μ is called scalar multiplication. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r \mathbf{u}$.

Properties of addition and scalar multiplication (brief)

VS1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
VS2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$
VS3. $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$
VS4. $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$
VS5. $1 \mathbf{x}=\mathbf{x}$
VS6. $(r s) \mathbf{x}=r(s \mathbf{x})$
VS7. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$
VS8. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$

Properties of addition and scalar multiplication (detailed)
VS1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$.
VS2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
VS3. There exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$ for all $x \in V$.
VS4. For any $x \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$. VS5. $1 \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$.
VS6. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. VS7. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.
VS8. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.

