MATH 423 Linear Algebra II Lecture 1: Classical vectors. Vector space.

Classical vectors

Vector is a mathematical concept characterized by its *magnitude* and *direction*.

Scalar is a mathematical concept characterized by its *magnitude* and, possibly, *sign*.

Scalar is a real number (positive or negative).

Many physical quantities are vectors:

- force;
- displacement, velocity, acceleration;
- electric field, magnetic field.

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

 \overrightarrow{AB} denotes a vector represented by the arrow with tip (endpoint) at *B* and tail (beginning) at *A*. For any vector **v** and a point *A* there is a unique point *B* such that $\overrightarrow{AB} = \mathbf{v}$.

Geometric fact: if a quadrilateral ABB'A' is a parallelogram then $\overrightarrow{AB} = \overrightarrow{A'B'}$. The converse holds if the points A, B, A', B' are not on the same line.

If $\mathbf{v} = \overrightarrow{AB}$ then \overrightarrow{BA} is called the *negative vector* of \mathbf{v} and denoted $-\mathbf{v}$. \overrightarrow{AA} is called the *zero vector* and denoted $\mathbf{0}$.

Vector addition

Given vectors **x** and **y**, their sum $\mathbf{x} + \mathbf{y}$ is defined by the rule $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. That is, choose points A, B, C so that $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{BC} = \mathbf{y}$. Then $\mathbf{x} + \mathbf{y} = \overrightarrow{AC}$.

Vector subtraction

The *difference* of vectors \mathbf{x} and \mathbf{y} is defined as $\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y})$.

Properties of vector addition:

$$\begin{array}{ll} (\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z}) & (\mbox{associative law}) \\ \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x} & (\mbox{commutative law}) \\ \mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x} \\ \mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0} \end{array}$$

Let
$$\overrightarrow{AB} = \mathbf{x}$$
. Then $\mathbf{x} + \mathbf{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \mathbf{x}$,
 $\mathbf{x} + (-\mathbf{x}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \mathbf{0}$.
Let $\overrightarrow{AB} = \mathbf{x}$, $\overrightarrow{BC} = \mathbf{y}$, and $\overrightarrow{CD} = \mathbf{z}$. Then
 $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$,
 $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD}) = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$.

Parallelogram law

Parallelogram law

Let
$$\overrightarrow{AB} = \mathbf{x}$$
, $\overrightarrow{BC} = \mathbf{y}$, $\overrightarrow{AB'} = \mathbf{y}$, and $\overrightarrow{B'C'} = \mathbf{x}$.
Then $\mathbf{x} + \mathbf{y} = \overrightarrow{AC}$, $\mathbf{y} + \mathbf{x} = \overrightarrow{AC'}$.

Scalar multiplication

Let **v** be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of **v**. The direction of $r\mathbf{v}$ coincides with that of **v** if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and **v** are opposite.

Scalar multiplication

Let **v** be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of **v**. The direction of $r\mathbf{v}$ coincides with that of **v** if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and **v** are opposite.

Properties of scalar multiplication:

$$r(s\mathbf{x}) = (rs)\mathbf{x}$$
(associative law) $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ (distributive law #1) $(r + s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ (distributive law #2) $1\mathbf{x} = \mathbf{x}$ $0\mathbf{x} = \mathbf{0}$

Classical vectors: algebraic approach

An *n*-dimensional coordinate vector is an element of \mathbb{R}^n , i.e., an ordered list (x_1, x_2, \ldots, x_n) of *n* real numbers. Let $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Vector sum: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$ Scalar multiple: $\mathbf{rx} = (\mathbf{rx}_1, \mathbf{rx}_2, \dots, \mathbf{rx}_n)$ *Zero vector:* $\mathbf{0} = (0, 0, ..., 0)$ Additive inverse: $-\mathbf{y} = (-v_1, -v_2, \dots, -v_n)$ Vector difference $\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y}) = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n)$

Properties of vector addition and scalar multiplication:

$$x + y = y + x$$

(x + y) + z = x + (y + z)
x + 0 = 0 + x = x
x + (-x) = (-x) + x = 0
(rs)x = r(sx)
r(x + y) = rx + ry
(r + s)x = rx + sx
1x = x
0x = 0
(-1)x = -x

Cartesian coordinates: geometric meets algebraic

Cartesian coordinates allow us to identify a plane with \mathbb{R}^2 (similarly, a line with \mathbb{R} and space with \mathbb{R}^3). Once we specify an *origin* O, each point A is associated a *position vector* \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O.

Abstract vector space: informal description

Vector space = linear space = a set V of objects (called vectors) that can be added and scaled.

That is, for any
$$\mathbf{u}, \mathbf{v} \in V$$
 and $r \in \mathbb{R}$ expressions
 $\mathbf{u} + \mathbf{v}$ and \mathbf{ru}

should make sense.

Certain restrictions apply. For instance,

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u},$$
$$2\mathbf{u} + 3\mathbf{u} = 5\mathbf{u}.$$

That is, we want the addition and scalar multiplication in V to be like those of the classical vectors.

Abstract vector space: definition

Vector space is a set *V* equipped with two operations $\alpha : V \times V \rightarrow V$ and $\mu : \mathbb{R} \times V \rightarrow V$ that have certain properties (listed below).

The operation α is called *addition*. For any $\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u} + \mathbf{v}$.

The operation μ is called *scalar multiplication*. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r\mathbf{u}$.

Properties of addition and scalar multiplication (brief)

VS1.
$$x + y = y + x$$

VS2. $(x + y) + z = x + (y + z)$
VS3. $x + 0 = 0 + x = x$
VS4. $x + (-x) = (-x) + x = 0$
VS5. $1x = x$
VS6. $(rs)x = r(sx)$
VS7. $r(x + y) = rx + ry$
VS8. $(r + s)x = rx + sx$

Properties of addition and scalar multiplication (detailed)

VS1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$. VS2. $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. VS3. There exists an element of V, called the *zero* vector and denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

VS4. For any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$. VS5. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

VS6. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. VS7. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$. VS8. $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.