MATH 423
 Linear Algebra II

Lecture 2:

Vector spaces: examples and basic properties.

Vector space

A vector space is a set V equipped with two operations, addition

$$
V \times V \ni(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}+\mathbf{y} \in V
$$

and scalar multiplication

$$
\mathbb{R} \times V \ni(r, \mathbf{x}) \mapsto r \mathbf{x} \in V
$$

that have the following properties:

Properties of addition and scalar multiplication

VS1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$.
VS2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
VS3. There exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$ for all $x \in V$.
VS4. For any $x \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$. VS5. $1 \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$.
VS6. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. VS7. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.
VS8. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.

- Associativity of addition implies that a multiple sum $\mathbf{u}_{1}+\mathbf{u}_{2}+\cdots+\mathbf{u}_{k}$ is well defined for any $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in V$.
- Subtraction in V is defined as follows:
$\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y})$.
- Addition and scalar multiplication are called linear operations.
Given $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in V$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$,

$$
r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}
$$

is called a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$.

Examples of vector spaces

In most examples, addition and scalar multiplication are natural operations so that properties VS1-VS8 are easy to verify.

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, \ldots\right)$ of real numbers (also denoted $\left\{x_{n}\right\}$)
For any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\infty}$ and $r \in \mathbb{R}$ let $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right), \quad r \mathbf{x}=\left(r x_{1}, r x_{2}, \ldots\right)$. Then $\mathbf{0}=(0,0, \ldots)$ and $-\mathbf{x}=\left(-x_{1},-x_{2}, \ldots\right)$.
- $\{\mathbf{0}\}$: the zero (or trivial) vector space $\mathbf{0}+\mathbf{0}=\mathbf{0}, r \mathbf{0}=\mathbf{0},-\mathbf{0}=\mathbf{0}$.

Linear operations on matrices

An $m \times n$ matrix is a rectangular array of numbers (called entries) that has m rows and n columns. Any element of \mathbb{R}^{n} may be regarded as an $n \times 1$ matrix (column vector) or as a $1 \times n$ matrix (row vector).
If A is a matrix, then $A_{i j}$ denotes its entry in row i and column j. Alternative notation: $A=\left(a_{i j}\right)$, where $a_{i j}$ is the entry in row i and column j. Let $A, B \in \mathcal{M}_{m, n}(\mathbb{R})$ and $r \in \mathbb{R}$.

Matrix sum: $\quad(A+B)_{i j}=A_{i j}+B_{i j}$
Scalar multiple: $\quad(r A)_{i j}=r A_{i j}$
Zero matrix O : all entries are zeros
Negative of a matrix: $\quad(-A)_{i j}=-A_{i j}$
As far as the linear operations are concerned, the $m \times n$ matrices have the same properties as vectors in $\mathbb{R}^{m n}$.

Functional vector spaces

- $\mathcal{F}(S)$: the set of all functions $f: S \rightarrow \mathbb{R}$, where S is a nonempty set.
Given functions $f, g \in \mathcal{F}(S)$ and a scalar $r \in \mathbb{R}$, let $(f+g)(x)=f(x)+g(x)$ and $(r f)(x)=r f(x)$ for all $x \in S$.
Zero vector: $o(x)=0$. Negative: $(-f)(x)=-f(x)$.
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ Linear operations are inherited from $\mathcal{F}(\mathbb{R})$. We only need to check that $f, g \in C(\mathbb{R}) \Longrightarrow f+g, r f \in C(\mathbb{R})$, the zero function is continuous, and $f \in C(\mathbb{R}) \Longrightarrow-f \in C(\mathbb{R})$.
- $C^{1}(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$

Counterexample: dumb scaling

Consider the set $V=\mathbb{R}^{2}$ with the standard addition and a nonstandard scalar multiplication:

$$
r \odot \mathbf{x}=\mathbf{0} \text { for any } \mathbf{x} \in \mathbb{R}^{2} \text { and } r \in \mathbb{R}
$$

Properties VS1-VS4 still hold because they do not involve scalar multiplication.
VS5. $1 \odot \mathbf{x}=\mathbf{x}$
VS6. $(r s) \odot \mathbf{x}=r \odot(s \odot \mathbf{x})$
$\Longleftrightarrow \mathbf{0}=\mathbf{x}$ VS7. $r \odot(\mathbf{x}+\mathbf{y})=r \odot \mathbf{x}+r \odot \mathbf{y}$

$$
\Longleftrightarrow \mathbf{0}=\mathbf{0}
$$

VS8. $(r+s) \odot \mathbf{x}=r \odot \mathbf{x}+s \odot \mathbf{x}$
$\Longleftrightarrow \mathbf{0}=\mathbf{0}+\mathbf{0}$
$\Longleftrightarrow \mathbf{0}=\mathbf{0}+\mathbf{0}$
VS5 is the only property that fails. Therefore property VS5 does not follow from the others.

Counterexample: lazy scaling

Consider the set $V=\mathbb{R}^{2}$ with the standard addition and a nonstandard scalar multiplication:

$$
r \odot \mathbf{x}=\mathbf{x} \text { for any } \mathbf{x} \in \mathbb{R}^{2} \text { and } r \in \mathbb{R}
$$

Properties VS1-VS4 still hold because they do not involve scalar multiplication.
VS5. $1 \odot \mathbf{x}=\mathbf{x}$
$\Longleftrightarrow x=x$
VS6. $(r s) \odot \mathbf{x}=r \odot(s \odot \mathbf{x})$
$\Longleftrightarrow x=x$ VS7. $r \odot(\mathbf{x}+\mathbf{y})=r \odot \mathbf{x}+r \odot \mathbf{y} \Longleftrightarrow \mathbf{x}+\mathbf{y}=\mathbf{x}+\mathbf{y}$ VS8. $(r+s) \odot \mathbf{x}=r \odot \mathbf{x}+s \odot \mathbf{x} \Longleftrightarrow \mathbf{x}=\mathbf{x}+\mathbf{x}$
The only property that fails is VS8.

Weird example

Consider the set $V=\mathbb{R}_{+}$of positive numbers with a nonstandard addition and scalar multiplication:

$$
\begin{array}{|l|l}
\hline x \oplus y=x y & \text { for any } x, y \in \mathbb{R}_{+} . \\
\hline r \odot x=x^{r} & \text { for any } x \in \mathbb{R}_{+} \text {and } r \in \mathbb{R} .
\end{array}
$$

VS1. $x \oplus y=y \oplus x \quad \Longleftrightarrow x y=y x$
VS2. $(x \oplus y) \oplus z=x \oplus(y \oplus z) \quad \Longleftrightarrow(x y) z=x(y z)$
VS3. $x \oplus \zeta=\zeta \oplus x=x \Longleftrightarrow x \zeta=\zeta x=x$ (holds for $\zeta=1$)
VS4. $x \oplus \eta=\eta \oplus x=1 \Longleftrightarrow x \eta=\eta x=1$ (holds for $\eta=x^{-1}$)
VS5. $1 \odot x=x \quad \Longleftrightarrow x^{1}=x$
VS6. $(r s) \odot x=r \odot(s \odot x) \quad \Longleftrightarrow x^{r s}=\left(x^{s}\right)^{r}$
VS7. $r \odot(x \oplus y)=(r \odot x) \oplus(r \odot y) \quad \Longleftrightarrow(x y)^{r}=x^{r} y^{r}$
VS8. $(r+s) \odot x=(r \odot x) \oplus(s \odot x) \Longleftrightarrow x^{r+s}=x^{r} x^{s}$

Some general observations

- The zero vector is unique.

Suppose \mathbf{z}_{1} and \mathbf{z}_{2} are zero vectors. Then $\mathbf{z}_{1}+\mathbf{z}_{2}=\mathbf{z}_{2}$ since \mathbf{z}_{1} is a zero vector and $\mathbf{z}_{1}+\mathbf{z}_{2}=\mathbf{z}_{1}$ since \mathbf{z}_{2} is a zero vector. Hence $\mathbf{z}_{1}=\mathbf{z}_{2}$.

- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

Suppose \mathbf{y} and \mathbf{y}^{\prime} are additive inverses of \mathbf{x}. Let us compute the sum $\mathbf{y}^{\prime}+\mathbf{x}+\mathbf{y}$ in two ways:

$$
\begin{aligned}
\left(\mathbf{y}^{\prime}+\mathbf{x}\right)+\mathbf{y}=\mathbf{0}+\mathbf{y} & =\mathbf{y} \\
\mathbf{y}^{\prime}+(\mathbf{x}+\mathbf{y})=\mathbf{y}^{\prime}+\mathbf{0} & =\mathbf{y}^{\prime}
\end{aligned}
$$

By associativity of the vector addition, $\mathbf{y}=\mathbf{y}^{\prime}$.

Some general observations

- (cancellation law) $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y}$ implies $\mathbf{x}=\mathbf{x}^{\prime}$ for any $\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y} \in V$.
If $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y}$ then $(\mathbf{x}+\mathbf{y})+(-\mathbf{y})=\left(\mathbf{x}^{\prime}+\mathbf{y}\right)+(-\mathbf{y})$. By associativity, $(\mathbf{x}+\mathbf{y})+(-\mathbf{y})=\mathbf{x}+(\mathbf{y}+(-\mathbf{y}))=\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $\left(\mathbf{x}^{\prime}+\mathbf{y}\right)+(-\mathbf{y})=\mathbf{x}^{\prime}+(\mathbf{y}+(-\mathbf{y}))=\mathbf{x}^{\prime}+\mathbf{0}=\mathbf{x}^{\prime}$. Hence $\mathbf{x}=\mathbf{x}^{\prime}$.
- $0 \mathbf{x}=\mathbf{0}$ for any $\mathbf{x} \in V$.

Indeed, $0 \mathbf{x}+\mathbf{x}=0 \mathbf{x}+1 \mathbf{x}=(0+1) \mathbf{x}=1 \mathbf{x}=\mathbf{x}=\mathbf{0}+\mathbf{x}$.
By the cancellation law, $0 \mathbf{x}=\mathbf{0}$.

- $(-1) x=-x$ for any $x \in V$.

Indeed, $\mathbf{x}+(-1) \mathbf{x}=(-1) \mathbf{x}+\mathbf{x}=(-1) \mathbf{x}+1 \mathbf{x}=(-1+1) \mathbf{x}$ $=0 \mathrm{x}=\mathbf{0}$.

