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Linear Algebra II

Lecture 2:

Vector spaces: examples and basic properties.



Vector space

A vector space is a set V equipped with two
operations, addition

V × V ∋ (x, y) 7→ x + y ∈ V

and scalar multiplication

R × V ∋ (r , x) 7→ rx ∈ V ,

that have the following properties:



Properties of addition and scalar multiplication

VS1. x + y = y + x for all x, y ∈ V .

VS2. (x + y) + z = x + (y + z) for all x, y, z ∈ V .

VS3. There exists an element of V , called the zero

vector and denoted 0, such that x + 0 = 0 + x = x

for all x ∈ V .

VS4. For any x ∈ V there exists an element of V ,
denoted −x, such that x + (−x) = (−x) + x = 0.

VS5. 1x = x for all x ∈ V .

VS6. (rs)x = r(sx) for all r , s ∈ R and x ∈ V .

VS7. r(x+ y) = rx+ ry for all r ∈R and x, y∈V .

VS8. (r + s)x = rx+ sx for all r , s ∈R and x∈V .



• Associativity of addition implies that a multiple
sum u1 + u2 + · · · + uk is well defined for any
u1,u2, . . . ,uk ∈ V .

• Subtraction in V is defined as follows:
x − y = x + (−y).

• Addition and scalar multiplication are called
linear operations.

Given u1,u2, . . . ,uk ∈ V and r1, r2, . . . , rk ∈ R,

r1u1 + r2u2 + · · · + rkuk

is called a linear combination of u1,u2, . . . ,uk .



Examples of vector spaces

In most examples, addition and scalar multiplication
are natural operations so that properties VS1–VS8
are easy to verify.

• R
n: n-dimensional coordinate vectors

• Mm,n(R): m×n matrices with real entries

• R
∞: infinite sequences (x1, x2, . . . ) of real

numbers (also denoted {xn})
For any x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈ R

∞ and r ∈ R

let x + y = (x1 + y1, x2 + y2, . . . ), rx = (rx1, rx2, . . . ).
Then 0 = (0, 0, . . . ) and −x = (−x1,−x2, . . . ).

• {0}: the zero (or trivial) vector space
0 + 0 = 0, r0 = 0, −0 = 0.



Linear operations on matrices

An m×n matrix is a rectangular array of numbers (called
entries) that has m rows and n columns. Any element of R

n

may be regarded as an n×1 matrix (column vector) or as a
1×n matrix (row vector).

If A is a matrix, then Aij denotes its entry in row i and column
j . Alternative notation: A = (aij), where aij is the entry in
row i and column j . Let A, B ∈ Mm,n(R) and r ∈ R.

Matrix sum: (A + B)ij = Aij + Bij

Scalar multiple: (rA)ij = rAij

Zero matrix O: all entries are zeros

Negative of a matrix: (−A)ij = −Aij

As far as the linear operations are concerned, the m×n

matrices have the same properties as vectors in R
mn.



Functional vector spaces

• F(S): the set of all functions f : S → R,
where S is a nonempty set.
Given functions f , g ∈ F(S) and a scalar r ∈ R, let
(f + g)(x) = f (x) + g(x) and (rf )(x) = rf (x) for all x ∈ S .
Zero vector: o(x) = 0. Negative: (−f )(x) = −f (x).

• C (R): all continuous functions f : R → R

Linear operations are inherited from F(R). We only need to
check that f , g ∈ C (R) =⇒ f +g , rf ∈ C (R), the zero
function is continuous, and f ∈ C (R) =⇒ −f ∈ C (R).

• C 1(R): all continuously differentiable functions
f : R → R

• C∞(R): all smooth functions f : R → R

• P : all polynomials p(x) = a0 + a1x + · · ·+ anx
n



Counterexample: dumb scaling

Consider the set V = R
2 with the standard

addition and a nonstandard scalar multiplication:

r ⊙ x = 0 for any x ∈ R
2 and r ∈ R.

Properties VS1–VS4 still hold because they do not
involve scalar multiplication.

VS5. 1 ⊙ x = x ⇐⇒ 0 = x

VS6. (rs) ⊙ x = r ⊙ (s ⊙ x) ⇐⇒ 0 = 0

VS7. r ⊙ (x + y) = r ⊙ x + r ⊙ y ⇐⇒ 0 = 0 + 0

VS8. (r + s) ⊙ x = r ⊙ x + s ⊙ x ⇐⇒ 0 = 0 + 0

VS5 is the only property that fails. Therefore
property VS5 does not follow from the others.



Counterexample: lazy scaling

Consider the set V = R
2 with the standard

addition and a nonstandard scalar multiplication:

r ⊙ x = x for any x ∈ R
2 and r ∈ R.

Properties VS1–VS4 still hold because they do not
involve scalar multiplication.

VS5. 1 ⊙ x = x ⇐⇒ x = x

VS6. (rs) ⊙ x = r ⊙ (s ⊙ x) ⇐⇒ x = x

VS7. r ⊙ (x+ y) = r ⊙ x+ r ⊙ y ⇐⇒ x+ y = x+ y

VS8. (r + s) ⊙ x = r ⊙ x + s ⊙ x ⇐⇒ x = x + x

The only property that fails is VS8.



Weird example

Consider the set V = R+ of positive numbers with a
nonstandard addition and scalar multiplication:

x ⊕ y = xy for any x , y ∈ R+.

r ⊙ x = x r for any x ∈ R+ and r ∈ R.

VS1. x ⊕ y = y ⊕ x ⇐⇒ xy = yx

VS2. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) ⇐⇒ (xy)z = x(yz)

VS3. x ⊕ ζ = ζ ⊕ x = x ⇐⇒ xζ = ζx = x (holds for ζ = 1)

VS4. x ⊕ η = η ⊕ x = 1 ⇐⇒ xη = ηx = 1 (holds for η = x−1)

VS5. 1 ⊙ x = x ⇐⇒ x1 = x

VS6. (rs) ⊙ x = r ⊙ (s ⊙ x) ⇐⇒ x rs = (x s)r

VS7. r ⊙ (x ⊕ y) = (r ⊙ x) ⊕ (r ⊙ y) ⇐⇒ (xy)r = x ry r

VS8. (r + s) ⊙ x = (r ⊙ x) ⊕ (s ⊙ x) ⇐⇒ x r+s = x rx s



Some general observations

• The zero vector is unique.

Suppose z1 and z2 are zero vectors. Then z1 + z2 = z2 since
z1 is a zero vector and z1 + z2 = z1 since z2 is a zero vector.
Hence z1 = z2.

• For any x ∈ V , the negative −x is unique.

Suppose y and y′ are additive inverses of x. Let us compute
the sum y′ + x + y in two ways:

(y′ + x) + y = 0 + y = y,

y′ + (x + y) = y′ + 0 = y′.

By associativity of the vector addition, y = y′.



Some general observations

• (cancellation law) x + y = x′ + y implies x = x′

for any x, x′, y ∈ V .

If x + y = x′ + y then (x + y) + (−y) = (x′ + y) + (−y). By
associativity, (x + y) + (−y) = x + (y + (−y)) = x + 0 = x

and (x′ + y) + (−y) = x′ + (y + (−y)) = x′ + 0 = x′. Hence
x = x′.

• 0x = 0 for any x ∈ V .

Indeed, 0x + x = 0x + 1x = (0 + 1)x = 1x = x = 0 + x.
By the cancellation law, 0x = 0.

• (−1)x = −x for any x ∈ V .

Indeed, x + (−1)x = (−1)x + x = (−1)x + 1x = (−1 + 1)x
= 0x = 0.


