MATH 423

Lecture 2: Vector spaces: examples and basic properties.

Linear Algebra II

Vector space

A *vector space* is a set V equipped with two operations, **addition**

$$V \times V \ni (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y} \in V$$

and scalar multiplication

$$\mathbb{R} \times V \ni (r, \mathbf{x}) \mapsto r\mathbf{x} \in V$$
,

that have the following properties:

Properties of addition and scalar multiplication

VS1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$.

VS2. (x + y) + z = x + (y + z) for all $x, y, z \in V$.

VS3. There exists an element of V, called the *zero* vector and denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

VS4. For any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$.

VS5. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

VS6. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.

VS7. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.

VS8. $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.

- Associativity of addition implies that a multiple sum $\mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_k$ is well defined for any $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$.
- **Subtraction** in V is defined as follows: $\mathbf{x} \mathbf{y} = \mathbf{x} + (-\mathbf{y})$.
- Addition and scalar multiplication are called **linear operations**.

Given
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$$
 and $r_1, r_2, \dots, r_k \in \mathbb{R}$,
$$\boxed{r_1\mathbf{u}_1 + r_2\mathbf{u}_2 + \dots + r_k\mathbf{u}_k}$$

is called a **linear combination** of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$.

Examples of vector spaces

In most examples, addition and scalar multiplication are natural operations so that properties VS1–VS8 are easy to verify.

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $(x_1, x_2, ...)$ of real numbers (also denoted $\{x_n\}$)

For any $\mathbf{x} = (x_1, x_2, ...)$, $\mathbf{y} = (y_1, y_2, ...) \in \mathbb{R}^{\infty}$ and $r \in \mathbb{R}$ let $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ...)$, $r\mathbf{x} = (rx_1, rx_2, ...)$. Then $\mathbf{0} = (0, 0, ...)$ and $-\mathbf{x} = (-x_1, -x_2, ...)$.

• $\{0\}$: the zero (or trivial) vector space $\mathbf{0} + \mathbf{0} = \mathbf{0}$, $r\mathbf{0} = \mathbf{0}$, $-\mathbf{0} = \mathbf{0}$.

Linear operations on matrices

An $m \times n$ matrix is a rectangular array of numbers (called entries) that has m rows and n columns. Any element of \mathbb{R}^n may be regarded as an $n \times 1$ matrix (column vector) or as a $1 \times n$ matrix (row vector).

If A is a matrix, then A_{ij} denotes its entry in row i and column j. Alternative notation: $A=(a_{ij})$, where a_{ij} is the entry in row i and column j. Let $A,B\in\mathcal{M}_{m,n}(\mathbb{R})$ and $r\in\mathbb{R}$.

Matrix sum:
$$(A+B)_{ij} = A_{ij} + B_{ij}$$

Scalar multiple:
$$(rA)_{ij} = rA_{ij}$$

Zero matrix O: all entries are zeros

Negative of a matrix:
$$(-A)_{ij} = -A_{ij}$$

As far as the linear operations are concerned, the $m \times n$ matrices have the same properties as vectors in \mathbb{R}^{mn} .

Functional vector spaces

• $\mathcal{F}(S)$: the set of all functions $f: S \to \mathbb{R}$, where S is a nonempty set.

Given functions $f, g \in \mathcal{F}(S)$ and a scalar $r \in \mathbb{R}$, let (f+g)(x) = f(x) + g(x) and (rf)(x) = rf(x) for all $x \in S$. Zero vector: o(x) = 0. Negative: (-f)(x) = -f(x).

- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$ Linear operations are inherited from $\mathcal{F}(\mathbb{R})$. We only need to check that $f,g \in C(\mathbb{R}) \implies f+g,rf \in C(\mathbb{R})$, the zero function is continuous, and $f \in C(\mathbb{R}) \implies -f \in C(\mathbb{R})$.
- $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$
 - $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \to \mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Counterexample: dumb scaling

Consider the set $V = \mathbb{R}^2$ with the standard addition and a nonstandard scalar multiplication:

$$\boxed{r\odot \mathbf{x} = \mathbf{0}}$$
 for any $\mathbf{x} \in \mathbb{R}^2$ and $r \in \mathbb{R}$.

Properties VS1–VS4 still hold because they do not involve scalar multiplication.

VS5.
$$1 \odot \mathbf{x} = \mathbf{x}$$
 $\iff \mathbf{0} = \mathbf{x}$
VS6. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x})$ $\iff \mathbf{0} = \mathbf{0}$
VS7. $r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y}$ $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$
VS8. $(r+s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x}$ $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$

VS5 is the only property that fails. Therefore property VS5 does not follow from the others.

Counterexample: lazy scaling

Consider the set $V = \mathbb{R}^2$ with the standard addition and a nonstandard scalar multiplication:

$$otag regions \mathbf{x} = \mathbf{x}
otag for any $\mathbf{x} \in \mathbb{R}^2$ and $r \in \mathbb{R}$.$$

Properties VS1–VS4 still hold because they do not involve scalar multiplication.

VS5.
$$1 \odot \mathbf{x} = \mathbf{x}$$
 $\iff \mathbf{x} = \mathbf{x}$
VS6. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x})$ $\iff \mathbf{x} = \mathbf{x}$
VS7. $r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y} \iff \mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}$
VS8. $(r+s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x} \iff \mathbf{x} = \mathbf{x} + \mathbf{x}$

The only property that fails is VS8.

Weird example

Consider the set $V = \mathbb{R}_+$ of positive numbers with a nonstandard addition and scalar multiplication:

VS1.
$$x \oplus y = y \oplus x$$
 $\iff xy = yx$
VS2. $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ $\iff (xy)z = x(yz)$
VS3. $x \oplus \zeta = \zeta \oplus x = x \iff x\zeta = \zeta x = x \text{ (holds for } \zeta = 1)$
VS4. $x \oplus \eta = \eta \oplus x = 1 \iff x\eta = \eta x = 1 \text{ (holds for } \eta = x^{-1})$
VS5. $1 \odot x = x \iff x^1 = x$
VS6. $(rs) \odot x = r \odot (s \odot x) \iff x^{rs} = (x^s)^r$
VS7. $r \odot (x \oplus y) = (r \odot x) \oplus (r \odot y) \iff (xy)^r = x^r y^r$
VS8. $(r+s) \odot x = (r \odot x) \oplus (s \odot x) \iff x^{r+s} = x^r x^s$

Some general observations

• The zero vector is unique.

Suppose \mathbf{z}_1 and \mathbf{z}_2 are zero vectors. Then $\mathbf{z}_1 + \mathbf{z}_2 = \mathbf{z}_2$ since \mathbf{z}_1 is a zero vector and $\mathbf{z}_1 + \mathbf{z}_2 = \mathbf{z}_1$ since \mathbf{z}_2 is a zero vector. Hence $\mathbf{z}_1 = \mathbf{z}_2$.

• For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

Suppose y and y' are additive inverses of x. Let us compute the sum y' + x + y in two ways:

$$(y' + x) + y = 0 + y = y,$$

 $y' + (x + y) = y' + 0 = y'.$

By associativity of the vector addition, $\mathbf{y} = \mathbf{y}'$.

Some general observations

• (cancellation law) $\mathbf{x} + \mathbf{y} = \mathbf{x}' + \mathbf{y}$ implies $\mathbf{x} = \mathbf{x}'$ for any $\mathbf{x}, \mathbf{x}', \mathbf{y} \in V$.

If $\mathbf{x} + \mathbf{y} = \mathbf{x}' + \mathbf{y}$ then $(\mathbf{x} + \mathbf{y}) + (-\mathbf{y}) = (\mathbf{x}' + \mathbf{y}) + (-\mathbf{y})$. By associativity, $(\mathbf{x} + \mathbf{y}) + (-\mathbf{y}) = \mathbf{x} + (\mathbf{y} + (-\mathbf{y})) = \mathbf{x} + \mathbf{0} = \mathbf{x}$ and $(\mathbf{x}' + \mathbf{y}) + (-\mathbf{y}) = \mathbf{x}' + (\mathbf{y} + (-\mathbf{y})) = \mathbf{x}' + \mathbf{0} = \mathbf{x}'$. Hence $\mathbf{x} = \mathbf{x}'$.

• $0\mathbf{x} = \mathbf{0}$ for any $\mathbf{x} \in V$.

Indeed, $0\mathbf{x} + \mathbf{x} = 0\mathbf{x} + 1\mathbf{x} = (0+1)\mathbf{x} = 1\mathbf{x} = \mathbf{x} = \mathbf{0} + \mathbf{x}$. By the cancellation law, $0\mathbf{x} = \mathbf{0}$.

• $(-1)\mathbf{x} = -\mathbf{x}$ for any $\mathbf{x} \in V$.

Indeed, $\mathbf{x} + (-1)\mathbf{x} = (-1)\mathbf{x} + \mathbf{x} = (-1)\mathbf{x} + 1\mathbf{x} = (-1+1)\mathbf{x} = 0\mathbf{x} = \mathbf{0}$.