MATH 423
 Linear Algebra II

Lecture 3:

Subspaces of vector spaces.
Review of complex numbers.
Vector space over a field.

Vector space

A vector space is a set V equipped with two operations, addition $V \times V \ni(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}+\mathbf{y} \in V$ and scalar multiplication $\mathbb{R} \times V \ni(r, \mathbf{x}) \mapsto r \mathbf{x} \in V$, that have the following properties:
VS1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$.
VS2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
VS3. There exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$.
VS4. For any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$.
VS5. $1 \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$.
VS6. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.
VS7. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.
VS8. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.
- $\mathbf{x}+\mathbf{z}=\mathbf{y}+\mathbf{z} \Longleftrightarrow \mathbf{x}=\mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
$\cdot \mathbf{x}+\mathbf{y}=\mathbf{z} \Longleftrightarrow \mathbf{x}=\mathbf{z}-\mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
- $0 \mathbf{x}=\mathbf{0}$ for any $\mathbf{x} \in V$.
- $(-1) \mathbf{x}=-\mathbf{x}$ for any $\mathbf{x} \in V$.

Examples of vector spaces

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{n} \in \mathbb{R}$
- $\{\mathbf{0}\}$: the trivial vector space
- $\mathcal{F}(S)$: the set of all functions $f: S \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- \mathcal{P}_{n} : all polynomials of degree at most n

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Examples.

- $\mathcal{F}(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $\mathcal{F}(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$
- \mathcal{P}_{n} : polynomials of degree at most n
\mathcal{P}_{n} is a subspace of \mathcal{P}.

Subspaces of vector spaces

Counterexamples.

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- \mathbb{Q}^{n} : vectors with rational coordinates
\mathbb{Q}^{n} is not a subspace of \mathbb{R}^{n}.
$\sqrt{2}(1,1, \ldots, 1) \notin \mathbb{Q}^{n} \Longrightarrow \mathbb{Q}^{n}$ is not a vector space (scaling is not well defined).
- \mathbb{R} with the standard linear operations
- \mathbb{R}_{+}with the operations \oplus and \odot
\mathbb{R}_{+}is not a subspace of \mathbb{R} since the linear operations do not agree.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Theorem A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \quad \Longrightarrow \quad \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R}
\end{gathered}
$$

Proof: "only if" is obvious.
"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties VS3 and VS4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0}=0 \mathbf{x} \in S$. Also, $-\mathbf{x}=(-1) \mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V.

Examples of subspaces

Each of the following functional vector spaces is a subspace of all preceding spaces:

- $\mathcal{F}(\mathbb{R})$: the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{1}(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- \mathcal{P}_{n} : all polynomials of degree at most n

Here polynomials are regarded as functions on the real line (otherwise \mathcal{P} is not a subset of $\mathcal{F}(\mathbb{R})$).

Examples of subspaces

Each of the following nested sets of infinite sequences is a subspace of \mathbb{R}^{∞} :

- \mathbb{R}^{∞} : all sequences $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right), x_{n} \in \mathbb{R}$.
- ℓ^{∞} : the set of bounded sequences.
- the set of converging sequences.
- the set of decaying sequences: $\lim _{n \rightarrow \infty} x_{n}=0$.
- the set of summable sequences: the series $x_{1}+x_{2}+\cdots$ is convergent.
- ℓ^{1} : the set of absolutely summable sequences; $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ belongs to ℓ^{1} if $\sum_{n=1}^{\infty}\left|x_{n}\right|<\infty$.
- \mathbb{R}_{0}^{∞} : the set of sequences $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ such that $x_{n}=0$ for all but finitely many indices.

Complex numbers

\mathbb{C} : complex numbers.
Complex number:

$$
z=x+i y
$$

where $x, y \in \mathbb{R}$ and $i^{2}=-1$.
$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right) \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$.

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2}
$$

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots
$$

Remark. A sequence of complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, \ldots$ converges to $z=x+i y$ if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

Theorem 1 If $z=x+i y, x, y \in \mathbb{R}$, then

$$
e^{z}=e^{x}(\cos y+i \sin y)
$$

In particular, $e^{i \phi}=\cos \phi+i \sin \phi, \phi \in \mathbb{R}$.
Theorem $2 e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i \phi}=\cos \phi+i \sin \phi$ for all $\phi \in \mathbb{R}$.
Proof: $e^{i \phi}=1+i \phi+\frac{(i \phi)^{2}}{2!}+\cdots+\frac{(i \phi)^{n}}{n!}+\cdots$
The sequence $1, i, i^{2}, i^{3}, \ldots, i^{n}, \ldots$ is periodic:
$\underbrace{1, i,-1,-i}, \underbrace{1, i,-1,-i}, \ldots$
It follows that

$$
\begin{aligned}
& e^{i \phi}=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\cdots+(-1)^{k} \frac{\phi^{2 k}}{(2 k)!}+\cdots \\
& +i\left(\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots+(-1)^{k} \frac{\phi^{2 k+1}}{(2 k+1)!}+\cdots\right)
\end{aligned}
$$

$=\cos \phi+i \sin \phi$.

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$$
x=r \cos \phi, y=r \sin \phi \Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$$
\text { If } z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} \text {, then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}, z_{1} / z_{2}=\left(r_{1} / r_{2}\right) e^{i\left(\phi_{1}-\phi_{2}\right)}
$$

Fundamental Theorem of Algebra

Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0},
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Field

The real numbers \mathbb{R} and the complex numbers \mathbb{C} motivated the introduction of an abstract algebraic structure called a field. Informally, a field is a set with 4 arithmetic operations (addition, subtraction, multiplication, and division) that have roughly the same properties as those of real (or complex) numbers.

As far as the linear algebra is concerned, a field is a set that can serve as a set of scalars for a vector space.

Examples of fields: \bullet Real numbers \mathbb{R}.

- Complex numbers \mathbb{C}.
- Rational numbers \mathbb{Q}.
- $\mathbb{Q}[\sqrt{2}]$: all numbers of the form $a+b \sqrt{2}$, where $a, b \in \mathbb{Q}$.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Field: formal definition

A field is a set F equipped with two operations, addition
$F \times F \ni(a, b) \mapsto a+b \in F$ and multiplication
$F \times F \ni(a, b) \mapsto a \cdot b \in F$, such that:
F1. $a+b=b+a$ for all $a, b \in F$.
F2. $(a+b)+c=a+(b+c)$ for all $a, b, c \in F$.
F3. There exists an element of F, denoted 0 , such that $a+0=0+a=a$ for all $a \in F$.
F4. For any $a \in F$ there exists an element of F, denoted $-a$, such that $a+(-a)=(-a)+a=0$.
F1'. $a \cdot b=b \cdot a$ for all $a, b \in F$.
F2'. $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in F$.
F3'. There exists an element of F different from 0 , denoted 1 , such that $a \cdot 1=1 \cdot a=a$ for all $a \in F$.
F4'. For any $a \in F, a \neq 0$ there exists an element of F, denoted a^{-1}, such that $a \cdot a^{-1}=a^{-1} \cdot a=1$.
F5. $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ for all $a, b, c \in F$.

Vector space over a field

The definition of a vector space over an arbitrary field F is obtained from the definition of the usual vector space by changing \mathbb{R} to F everywhere in the latter.

Examples of vector spaces over a field F :

- The space F^{n} of n-dimensional coordinate vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with coordinates in F.
- The space $\mathcal{M}_{m, n}(F)$ of $m \times n$ matrices with entries in F.
- The space $F[X]$ of polynomials in variable X $p(x)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ with coefficients in F.
- Any field F^{\prime} that is an extension of F (i.e., $F \subset F^{\prime}$ and the operations on F are restrictions of the corresponding operations on F^{\prime}). In particular, \mathbb{C} is a vector space over \mathbb{R} and over \mathbb{Q}, \mathbb{R} is a vector space over $\mathbb{Q}, \mathbb{Q}[\sqrt{2}]$ is a vector space over \mathbb{Q}.

