MATH 423
Linear Algebra Il

Lecture 3:
Subspaces of vector spaces.
Review of complex numbers.

Vector space over a field.



Vector space

A vector space is a set V equipped with two operations,
addition V x V 35 (x,y) — x+y € V and scalar
multiplication R x V 3 (r,x) — rx € V, that have the
following properties:

VS1. x+y=y-+x forall x,y e V.

VS2. (x+y)+z=x+(y+z) forall x,y,ze V.

VS3. There exists an element of V/, called the zero vector and
denoted 0, such that x +0=0+x=x forall x ¢ V.

VS4. For any x € V' there exists an element of V/, denoted
—x, such that x+ (—x) = (—x) +x = 0.

VS5, Ix=x forall x € V.

VS6. (rs)x = r(sx) forall r,s€R and x€ V.

VS7. r(x+y)=rx+ry forall reR and x,ye V.

VS8. (r+s)x =rx+sx forall r,seR and xe V.



Additional properties of vector spaces

e The zero vector is unique.

e For any x € V, the negative —x is unique.

e X+z=y+z <= x=y forall x,y,ze V.

e X+y=z<= x=2z—y forall x,y,ze V.

e Ox=0 forany xe V.
e (—1)x=—x forany xe V.



Examples of vector spaces

e R" n-dimensional coordinate vectors

o M, ,(R): mxn matrices with real entries

e R™: infinite sequences (x1,x,...), X, € R

e {0}: the trivial vector space

e F(S): the set of all functions f:S — R

e C(R): all continuous functions f : R — R

e P: all polynomials p(x) = ag + aix + - - - + a,x"

e P, all polynomials of degree at most n



Subspaces of vector spaces

Definition. A vector space V| is a subspace of a
vector space V if Vy C V' and the linear operations
on V{ agree with the linear operations on V.

Examples.
e F(R): all functions f: R — R

e C(R): all continuous functions f : R — R
C(R) is a subspace of F(R).

e P: polynomials p(x) = ap+ arx + - -+ + axx*

e P, polynomials of degree at most n

P, is a subspace of P.



Subspaces of vector spaces

Counterexamples.

e R": n-dimensional coordinate vectors

e Q" vectors with rational coordinates
Q" is not a subspace of R".

V2(1,1,...,1) ¢ Q" = Q" is not a vector space
(scaling is not well defined).

e R with the standard linear operations

e R, with the operations & and ®

R, is not a subspace of R since the linear
operations do not agree.



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However
S need not be closed under these operations.

Theorem A subset S of a vector space V is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x,yeS — x+yes,
xeS — rrxeS§ forall reR.

Proof:  “only if" is obvious.

“if"": properties like associative, commutative, or distributive
law hold for S because they hold for V. We only need to
verify properties VS3 and VS4. Take any x € S (note that S
is nonempty). Then 0 =0x € S. Also, —x = (—1)x € S.
Thus 0 and —x in S are the same as in V.



Examples of subspaces

Each of the following functional vector spaces is a
subspace of all preceding spaces:

e F(R): the set of all functions f : R — R
e C(R): all continuous functions f : R — R

e C!(R): all continuously differentiable functions
f-R—-R

e C>(R): all smooth functions f : R — R
e P: all polynomials p(x) = ap + aix + -+ - + a,x”
e P, all polynomials of degree at most n

Here polynomials are regarded as functions on the
real line (otherwise P is not a subset of F(R)).



Examples of subspaces
Each of the following nested sets of infinite
sequences is a subspace of R*:
e RR*: all sequences x = (x1,X2,...), X, € R.
e (>: the set of bounded sequences.
e the set of converging sequences.
e the set of decaying sequences: lim, . x, = 0.
e the set of summable sequences: the series
X1 + Xp + - -+ IS convergent.
e (': the set of absolutely summable sequences;
x = (x1, X%, ...) belongs to /1 if >°7 |x,| < oco.
e R the set of sequences x = (x1, X2, ... ) such
that x, = 0 for all but finitely many indices.



Complex numbers

C: complex numbers.

Complex number: |z = x + iy,

where x,y € R and /2 = —1.
I = +/—1: imaginary unit
Alternative notation: z = x + yi.

x = real part of z,
Iy = imaginary part of z

y =0 = z = x (real number)
x =0 = z =iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that 2 = —1).

If 2z =x1 +iy1 and z = x» + iy», then
zi+ 2= (x1+x)+i(y1 + y),
z1—2=(x1—x)+i(y1 — y),

2122 = (x1x2 — y1y2) + i(xwy2 + xey1).

Given z = x + iy, the complex conjugate of z is

Z=x—1iy. The modulus of z is |z| = \/x% + y2.

zz = (x+iy)(x —iy) = x> = (iy)> = x> + y? = |z|2.
1 z X — 1y

_ A
Z —|Z—2, (X+Iy) _X2—|—y2.




Complex exponentials

Definition. For any z € C let
2 n

z z
e“=14+z4+—+ -4+ —4+--.

21 n!
Remark. A sequence of complex numbers
z1=Xx1+ Iy1, 2 = x>+ Iy»,... converges

to z=x+1iy if x, > x and y, — y as n — .

Theorem 1 If z=x+ iy, x,y € R, then
e’ = e*(cosy + isiny).

In particular, e'® =cos¢ + ising, ¢ € R.

Theorem 2 e*™" = ¢e?.¢e" forall z,w € C.



Proposition e'® =cos¢ +ising forall ¢ € R.

. 2 . n
Proof: e"¢:1+i¢+(13) +...+(’fl) 4.
The sequence 1,i,i% i3,...,i", ... is periodic:
l'ai)_l;_i;!-,i,_l,—i,...
It follows that
¢ i * k ¢2k
P =1—-— 4+ — .. (=1
° o tw T g
_ ¢3 ¢5 . ¢2k+1
(=)
+'<¢ st e T O ey

= Ccos ¢ + isin ¢.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x,y) € R?.

A A

y

X=rcos¢, y=rsing => z=r(cos¢+ising)= re’
If z; = ne'® and z, = rne'®, then
2120 = nne91t9) 7 /2y = (n/n)el(91792),



Fundamental Theorem of Algebra

Any polynomial of degree n > 1, with complex
coefficients, has exactly n roots (counting with
multiplicities).

Equivalently, if
p(z) = apz"+ an12" 1+ -+ a1z + a,

where a; € C and a, # 0, then there exist complex
numbers zi, 2, ..., z, such that

p(z) =an(z—2z21)(z—2)...(z — z,).



Field

The real numbers R and the complex numbers C motivated
the introduction of an abstract algebraic structure called a
field. Informally, a field is a set with 4 arithmetic operations
(addition, subtraction, multiplication, and division) that have
roughly the same properties as those of real (or complex)
numbers.

As far as the linear algebra is concerned, a field is a set that
can serve as a set of scalars for a vector space.

Examples of fields: e Real numbers R.

e Complex numbers C.

e Rational numbers Q.

° Q[\/ﬁ]: all numbers of the form a+ bv/2, where a, b € Q.
e R(X): rational functions in variable X with real coefficients.



Field: formal definition

A field is a set F equipped with two operations, addition
F x F>(a,b)— a+ b e F and multiplication
F x F>(ab)— a-beF, such that:

F1. a+b=b+a forall a,be F.

F2. (a+b)+c=a+(b+c) forall a,b,ceF.

F3. There exists an element of F, denoted 0, such that
a+0=0+a=a forall aeF.

F4. For any a € F there exists an element of F, denoted —a,
such that a+ (—a) =(—a)+a=0.

F1'. a-b=b-a forall a,be F.

F2'. (a-b)-c=a-(b-c) forall a,b,c€F.

F3’. There exists an element of F different from 0, denoted 1,
suchthat a-1=1-a=2a forall a€ F.

F4'. For any a € F, a# 0 there exists an element of F,
denoted a !, such that a-a'=a1'.-a=1

F5. a-(b+c)=(a-b)+(a-c) forall a,b,ceF.



Vector space over a field

The definition of a vector space over an arbitrary field F is
obtained from the definition of the usual vector space by
changing R to F everywhere in the latter.

Examples of vector spaces over a field F:

e The space F" of n-dimensional coordinate vectors
(x1, X2, ..., X,) with coordinates in F.

e The space M, ,(F) of mxn matrices with entries in F.

e The space F[X] of polynomials in variable X
p(x) =ao+ a X +---+ a,X" with coefficients in F.

e Any field F’ that is an extension of F (i.e., F C F' and
the operations on F are restrictions of the corresponding
operations on F’). In particular, C is a vector space over R
and over Q, R is a vector space over Q, Q[v/2] is a vector
space over Q.



