MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field.

Vector space

A vector space is a set V equipped with two operations, addition $V \times V \ni (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y} \in V$ and scalar multiplication $\mathbb{R} \times V \ni (r, \mathbf{x}) \mapsto r\mathbf{x} \in V$, that have the following properties:

VS1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$. VS2. $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. VS3. There exists an element of V, called the zero vector and denoted **0**, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$. VS4. For any $\mathbf{x} \in V$ there exists an element of V, denoted -x, such that x + (-x) = (-x) + x = 0. VS5. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$. VS6. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. VS7. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$. VS8. $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

•
$$\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z} \iff \mathbf{x} = \mathbf{y}$$
 for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.

• $\mathbf{x} + \mathbf{y} = \mathbf{z} \iff \mathbf{x} = \mathbf{z} - \mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.

•
$$0\mathbf{x} = \mathbf{0}$$
 for any $\mathbf{x} \in V$.

• $(-1)\mathbf{x} = -\mathbf{x}$ for any $\mathbf{x} \in V$.

Examples of vector spaces

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \dots) , $x_n \in \mathbb{R}$
- $\{0\}$: the trivial vector space
- $\mathcal{F}(S)$: the set of all functions $f: S \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1x + \cdots + a_nx^n$
- \mathcal{P}_n : all polynomials of degree at most n

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $\mathcal{F}(\mathbb{R})$: all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $\mathcal{F}(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_k x^k$
- \mathcal{P}_n : polynomials of degree at most n \mathcal{P}_n is a subspace of \mathcal{P} .

Subspaces of vector spaces

Counterexamples.

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- \mathbb{Q}^n : vectors with rational coordinates

 \mathbb{Q}^n is not a subspace of \mathbb{R}^n .

 $\sqrt{2}(1, 1, \dots, 1) \notin \mathbb{Q}^n \implies \mathbb{Q}^n$ is not a vector space (scaling is not well defined).

 $\bullet~\mathbb{R}$ with the standard linear operations

• \mathbb{R}_+ with the operations \oplus and \odot \mathbb{R}_+ is not a subspace of \mathbb{R} since the linear operations do not agree. If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Theorem A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\begin{array}{rcl} \mathbf{x},\mathbf{y}\in S & \Longrightarrow & \mathbf{x}+\mathbf{y}\in S,\\ \mathbf{x}\in S & \Longrightarrow & r\mathbf{x}\in S & \text{for all} & r\in \mathbb{R}. \end{array}$$

Proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties VS3 and VS4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V.

Examples of subspaces

Each of the following functional vector spaces is a subspace of all preceding spaces:

- $\mathcal{F}(\mathbb{R})$: the set of all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f:\mathbb{R}\to\mathbb{R}$
- $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f:\mathbb{R}\to\mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- \mathcal{P}_n : all polynomials of degree at most n

Here polynomials are regarded as functions on the real line (otherwise \mathcal{P} is not a subset of $\mathcal{F}(\mathbb{R})$).

Examples of subspaces

Each of the following nested sets of infinite sequences is a subspace of \mathbb{R}^{∞} :

- \mathbb{R}^{∞} : all sequences $\mathbf{x} = (x_1, x_2, \dots), x_n \in \mathbb{R}$.
- ℓ^{∞} : the set of bounded sequences.
- the set of converging sequences.
- the set of decaying sequences: $\lim_{n\to\infty} x_n = 0$.
- the set of summable sequences: the series $x_1 + x_2 + \cdots$ is convergent.

ℓ¹: the set of absolutely summable sequences;
x = (x₁, x₂, ...) belongs to ℓ¹ if ∑_{n=1}[∞] |x_n| < ∞.
ℝ₀[∞]: the set of sequences x = (x₁, x₂, ...) such that x_n = 0 for all but finitely many indices.

Complex numbers

 $\mathbb{C} \colon$ complex numbers.

Complex number:
$$\boxed{z=x+iy}$$
,
where $x,y\in\mathbb{R}$ and $i^2=-1$.
 $i=\sqrt{-1}$: imaginary unit

Alternative notation: z = x + yi.

$$\begin{array}{l} x = \mbox{real part of } z, \\ iy = \mbox{imaginary part of } z \\ y = 0 \implies z = x \mbox{ (real number)} \\ x = 0 \implies z = iy \mbox{ (purely imaginary number)} \end{array}$$

We add, subtract, and multiply complex numbers as polynomials in *i* (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$, $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$, $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$.

Given z = x + iy, the complex conjugate of z is $\bar{z} = x - iy$. The modulus of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$. $z^{-1} = \frac{\bar{z}}{|z|^2}$, $(x + iy)^{-1} = \frac{x - iy}{x^2 + y^2}$.

Complex exponentials

Definition. For any
$$z \in \mathbb{C}$$
 let $e^z = 1 + z + rac{z^2}{2!} + \cdots + rac{z^n}{n!} + \cdots$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,... converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i \sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \dots + \frac{(i\phi)^n}{n!} + \dots$$

The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $1, i, -1, -i, \underbrace{1, i, -1, -i}_{i, \dots}, \dots$

It follows that

 $=\cos\phi + i\sin\phi.$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.

 $x = r \cos \phi, \ y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$ If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}, \ z_1/z_2 = (r_1/r_2) e^{i(\phi_1 - \phi_2)}.$

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly *n* roots (counting with multiplicities).

Equivalently, if $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$ where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \dots, z_n such that $p(z) = a_n (z - z_1)(z - z_2) \dots (z - z_n).$

Field

The real numbers $\mathbb R$ and the complex numbers $\mathbb C$ motivated the introduction of an abstract algebraic structure called a **field**. Informally, a field is a set with 4 arithmetic operations (addition, subtraction, multiplication, and division) that have roughly the same properties as those of real (or complex) numbers.

As far as the linear algebra is concerned, a field is a set that can serve as a set of scalars for a vector space.

Examples of fields: • Real numbers \mathbb{R} .

- \bullet Complex numbers $\mathbb{C}.$
- \bullet Rational numbers $\mathbb Q.$
- $\mathbb{Q}[\sqrt{2}]$: all numbers of the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Q}$.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Field: formal definition

A **field** is a set F equipped with two operations, **addition** $F \times F \ni (a, b) \mapsto a + b \in F$ and multiplication $F \times F \ni (a, b) \mapsto a \cdot b \in F$, such that: F1. a + b = b + a for all $a, b \in F$. F2. (a + b) + c = a + (b + c) for all $a, b, c \in F$. F3. There exists an element of F, denoted 0, such that a + 0 = 0 + a = a for all $a \in F$. F4. For any $a \in F$ there exists an element of F, denoted -a, such that a + (-a) = (-a) + a = 0. F1'. $a \cdot b = b \cdot a$ for all $a, b \in F$. F2'. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in F$. F3'. There exists an element of F different from 0, denoted 1, such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in F$. F4'. For any $a \in F$, $a \neq 0$ there exists an element of F, denoted a^{-1} , such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$. F5. $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in F$.

Vector space over a field

The definition of a vector space over an arbitrary field F is obtained from the definition of the usual vector space by changing \mathbb{R} to F everywhere in the latter.

Examples of vector spaces over a field F:

• The space F^n of *n*-dimensional coordinate vectors (x_1, x_2, \ldots, x_n) with coordinates in *F*.

- The space $\mathcal{M}_{m,n}(F)$ of $m \times n$ matrices with entries in F.
- The space F[X] of polynomials in variable X $p(x) = a_0 + a_1 X + \dots + a_n X^n$ with coefficients in F.

• Any field F' that is an extension of F (i.e., $F \subset F'$ and the operations on F are restrictions of the corresponding operations on F'). In particular, \mathbb{C} is a vector space over \mathbb{R} and over \mathbb{Q} , \mathbb{R} is a vector space over \mathbb{Q} , $\mathbb{Q}[\sqrt{2}]$ is a vector space over \mathbb{Q} .