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Linear Algebra II

Lecture 3:

Subspaces of vector spaces.

Review of complex numbers.

Vector space over a field.



Vector space

A vector space is a set V equipped with two operations,
addition V × V ∋ (x, y) 7→ x + y ∈ V and scalar

multiplication R × V ∋ (r , x) 7→ rx ∈ V , that have the
following properties:

VS1. x + y = y + x for all x, y ∈ V .

VS2. (x + y) + z = x + (y + z) for all x, y, z ∈ V .

VS3. There exists an element of V , called the zero vector and
denoted 0, such that x + 0 = 0 + x = x for all x ∈ V .

VS4. For any x ∈ V there exists an element of V , denoted
−x, such that x + (−x) = (−x) + x = 0.

VS5. 1x = x for all x ∈ V .

VS6. (rs)x = r(sx) for all r , s ∈ R and x ∈ V .

VS7. r(x+ y) = rx+ ry for all r ∈R and x, y∈V .

VS8. (r + s)x = rx+ sx for all r , s ∈R and x∈V .



Additional properties of vector spaces

• The zero vector is unique.

• For any x ∈ V , the negative −x is unique.

• x + z = y + z ⇐⇒ x = y for all x, y, z ∈ V .

• x + y = z ⇐⇒ x = z − y for all x, y, z ∈ V .

• 0x = 0 for any x ∈ V .

• (−1)x = −x for any x ∈ V .



Examples of vector spaces

• Rn: n-dimensional coordinate vectors

• Mm,n(R): m×n matrices with real entries

• R∞: infinite sequences (x1, x2, . . . ), xn ∈ R

• {0}: the trivial vector space

• F(S): the set of all functions f : S → R

• C (R): all continuous functions f : R → R

• P : all polynomials p(x) = a0 + a1x + · · ·+ anx
n

• Pn: all polynomials of degree at most n



Subspaces of vector spaces

Definition. A vector space V0 is a subspace of a
vector space V if V0 ⊂ V and the linear operations
on V0 agree with the linear operations on V .

Examples.

• F(R): all functions f : R → R

• C (R): all continuous functions f : R → R

C (R) is a subspace of F(R).

• P : polynomials p(x) = a0 + a1x + · · · + akx
k

• Pn: polynomials of degree at most n

Pn is a subspace of P .



Subspaces of vector spaces

Counterexamples.

• Rn: n-dimensional coordinate vectors

• Qn: vectors with rational coordinates

Qn is not a subspace of Rn.
√

2(1, 1, . . . , 1) /∈ Qn =⇒ Qn is not a vector space
(scaling is not well defined).

• R with the standard linear operations

• R+ with the operations ⊕ and ⊙
R+ is not a subspace of R since the linear
operations do not agree.



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However
S need not be closed under these operations.

Theorem A subset S of a vector space V is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x, y ∈ S =⇒ x + y ∈ S ,

x ∈ S =⇒ rx ∈ S for all r ∈ R.

Proof: “only if” is obvious.
“if”: properties like associative, commutative, or distributive
law hold for S because they hold for V . We only need to
verify properties VS3 and VS4. Take any x ∈ S (note that S

is nonempty). Then 0 = 0x ∈ S . Also, −x = (−1)x ∈ S .
Thus 0 and −x in S are the same as in V .



Examples of subspaces

Each of the following functional vector spaces is a
subspace of all preceding spaces:

• F(R): the set of all functions f : R → R

• C (R): all continuous functions f : R → R

• C 1(R): all continuously differentiable functions
f : R → R

• C∞(R): all smooth functions f : R → R

• P : all polynomials p(x) = a0 + a1x + · · ·+ anx
n

• Pn: all polynomials of degree at most n

Here polynomials are regarded as functions on the
real line (otherwise P is not a subset of F(R)).



Examples of subspaces

Each of the following nested sets of infinite
sequences is a subspace of R∞:

• R∞: all sequences x = (x1, x2, . . . ), xn ∈ R.

• ℓ∞: the set of bounded sequences.

• the set of converging sequences.

• the set of decaying sequences: limn→∞ xn = 0.

• the set of summable sequences: the series
x1 + x2 + · · · is convergent.

• ℓ1: the set of absolutely summable sequences;
x = (x1, x2, . . . ) belongs to ℓ1 if

∑∞
n=1 |xn| < ∞.

• R∞
0 : the set of sequences x = (x1, x2, . . . ) such

that xn = 0 for all but finitely many indices.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that i2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is
z̄ = x − iy . The modulus of z is |z | =

√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2 − (iy)2 = x2 + y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Complex exponentials

Definition. For any z ∈ C let

ez = 1 + z +
z2

2!
+ · · · + zn

n!
+ · · ·

Remark. A sequence of complex numbers
z1 = x1 + iy1, z2 = x2 + iy2, . . . converges
to z = x + iy if xn → x and yn → y as n → ∞.

Theorem 1 If z = x + iy , x , y ∈ R, then

ez = ex(cos y + i sin y).

In particular, e iφ = cos φ + i sin φ, φ ∈ R.

Theorem 2 ez+w = ez · ew for all z , w ∈ C.



Proposition e iφ = cos φ + i sin φ for all φ ∈ R.

Proof: e iφ = 1 + iφ +
(iφ)2

2!
+ · · · + (iφ)n

n!
+ · · ·

The sequence 1, i , i2, i3, . . . , in, . . . is periodic:
1, i ,−1,−i
︸ ︷︷ ︸

, 1, i ,−1,−i
︸ ︷︷ ︸

, . . .

It follows that

e iφ = 1 − φ2

2!
+

φ4

4!
− · · · + (−1)k

φ2k

(2k)!
+ · · ·

+ i

(

φ − φ3

3!
+

φ5

5!
− · · · + (−1)k

φ2k+1

(2k + 1)!
+ · · ·

)

= cos φ + i sin φ.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x , y) ∈ R2.

y

x0

r

φ
0

x = r cos φ, y = r sin φ =⇒ z = r(cos φ + i sin φ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then
z1z2 = r1r2e

i(φ1+φ2), z1/z2 = (r1/r2)e
i(φ1−φ2).



Fundamental Theorem of Algebra

Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with
multiplicities).

Equivalently, if

p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Field

The real numbers R and the complex numbers C motivated
the introduction of an abstract algebraic structure called a
field. Informally, a field is a set with 4 arithmetic operations
(addition, subtraction, multiplication, and division) that have
roughly the same properties as those of real (or complex)
numbers.

As far as the linear algebra is concerned, a field is a set that
can serve as a set of scalars for a vector space.

Examples of fields: • Real numbers R.

• Complex numbers C.

• Rational numbers Q.

• Q[
√

2]: all numbers of the form a + b
√

2, where a, b ∈ Q.

• R(X ): rational functions in variable X with real coefficients.



Field: formal definition

A field is a set F equipped with two operations, addition

F × F ∋ (a, b) 7→ a + b ∈ F and multiplication

F × F ∋ (a, b) 7→ a · b ∈ F , such that:

F1. a + b = b + a for all a, b ∈ F .
F2. (a + b) + c = a + (b + c) for all a, b, c ∈ F .
F3. There exists an element of F , denoted 0, such that
a + 0 = 0 + a = a for all a ∈ F .
F4. For any a ∈ F there exists an element of F , denoted −a,
such that a + (−a) = (−a) + a = 0.

F1′. a · b = b · a for all a, b ∈ F .
F2′. (a · b) · c = a · (b · c) for all a, b, c ∈ F .
F3′. There exists an element of F different from 0, denoted 1,
such that a · 1 = 1 · a = a for all a ∈ F .
F4′. For any a ∈ F , a 6= 0 there exists an element of F ,
denoted a−1, such that a · a−1 = a−1 · a = 1.

F5. a · (b + c) = (a · b) + (a · c) for all a, b, c ∈ F .



Vector space over a field

The definition of a vector space over an arbitrary field F is
obtained from the definition of the usual vector space by
changing R to F everywhere in the latter.

Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate vectors
(x1, x2, . . . , xn) with coordinates in F .

• The space Mm,n(F ) of m×n matrices with entries in F .

• The space F [X ] of polynomials in variable X

p(x) = a0 + a1X + · · · + anX
n with coefficients in F .

• Any field F ′ that is an extension of F (i.e., F ⊂ F ′ and
the operations on F are restrictions of the corresponding
operations on F ′). In particular, C is a vector space over R

and over Q, R is a vector space over Q, Q[
√

2] is a vector
space over Q.


