MATH 423
 Linear Algebra II

Lecture 4:

Span. Spanning set.
Linear independence.

Vector space over a field

The definition of a vector space V over an arbitrary field \mathbb{F} is obtained from the definition of the usual vector space by changing \mathbb{R} to \mathbb{F} everywhere in the latter. Namely, the changes are:

- scalar multiple $r \mathbf{x}$ is defined for all $r \in \mathbb{F}$ and $\mathbf{x} \in V$.
- VS6. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{F}$ and $\mathbf{x} \in V$.
- VS7. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{F}$ and $\mathbf{x}, \mathbf{y} \in V$.
- VS8. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{F}$ and $\mathbf{x} \in V$.

In what follows, it is okay to assume that \mathbb{F} is either \mathbb{R} or \mathbb{C}.

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Theorem A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \quad \Longrightarrow \quad \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{F} .
\end{gathered}
$$

Remarks. The zero vector in a subspace is the same as the zero vector in V. Also, the subtraction in a subspace agrees with that in V.

Let V be a vector space (over a field \mathbb{F}). For any
$\mathbf{v} \in V$ we denote by $\mathbb{F} \mathbf{v}$ the set of all scalar multiples of the vector \mathbf{v} in $V: \mathbb{F} \mathbf{v}=\{r \mathbf{v} \mid r \in \mathbb{F}\}$.

Theorem $1 \mathbb{F} \mathbf{v}$ is a subspace of V.
Proof: The set $\mathbb{F v}$ is not empty since \mathbb{F} is not empty. $\mathbb{F} \mathbf{v}$ is closed under addition since $r \mathbf{v}+s \mathbf{v}=(r+s) \mathbf{v}$.
$\mathbb{F} \mathbf{v}$ is closed under scaling since $s(r \mathbf{v})=(s r) \mathbf{v}$.

Given two subsets X and Y of V, we define another subset, denoted $X+Y$, by $X+Y=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in X, \mathbf{y} \in Y\}$.

Theorem 2 If X and Y are subspaces of V, then $X+Y$ is also a subspace of V.

Proof: The set $X+Y$ is not empty since X and Y are not empty. $X+Y$ is closed under addition since X and Y are:

$$
(\mathbf{x}+\mathbf{y})+\left(\mathbf{x}^{\prime}+\mathbf{y}^{\prime}\right)=\left(\mathbf{x}+\mathbf{x}^{\prime}\right)+\left(\mathbf{y}+\mathbf{y}^{\prime}\right)
$$

$X+Y$ is closed under scaling since X and Y are:

$$
r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}
$$

For any subsets $X_{1}, X_{2}, \ldots, X_{n}$ of V we define another subset $X_{1}+X_{2}+\cdots+X_{n}=\left\{\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{n} \mid \mathbf{x}_{i} \in X_{i}, 1 \leq i \leq n\right\}$.

Theorem 3 The set $X_{1}+X_{2}+\cdots+X_{n}$ is a subspace of V provided that each X_{i} is a subspace of V.

Theorem 3 is proved by repeatedly applying Theorem 2. First $X_{1}+X_{2}$ is a subspace. Then $X_{1}+X_{2}+X_{3}=\left(X_{1}+X_{2}\right)+X_{3}$ is a subspace. Then $X_{1}+X_{2}+X_{3}+X_{4}=\left(X_{1}+X_{2}+X_{3}\right)+X_{4}$ is a subspace, and so on.

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$. Consider the set L of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{F}$.

Theorem $4 L$ is a subspace of V.
Proof: First of all, L is not empty. For example, $\mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{n}$ belongs to L.
The set L is closed under addition since

$$
\begin{aligned}
& \left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)+\left(s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{n} \mathbf{v}_{n}\right)= \\
& \quad=\left(r_{1}+s_{1}\right) \mathbf{v}_{1}+\left(r_{2}+s_{2}\right) \mathbf{v}_{2}+\cdots+\left(r_{n}+s_{n}\right) \mathbf{v}_{n} .
\end{aligned}
$$

The set L is closed under scalar multiplication since

$$
t\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)=\left(t r_{1}\right) \mathbf{v}_{1}+\left(t r_{2}\right) \mathbf{v}_{2}+\cdots+\left(t r_{n}\right) \mathbf{v}_{n} .
$$

Alternative proof: It is easy to see that

$$
L=\mathbb{F} \mathbf{v}_{1}+\mathbb{F} \mathbf{v}_{2}+\cdots+\mathbb{F} \mathbf{v}_{n}
$$

The previous theorems imply that L is a subspace.

Span: implicit definition

Let S be a subset of a vector space V.
Definition. The span of the set S, denoted $\operatorname{Span}(S)$, is the smallest subspace of V that contains S. That is,

- $\operatorname{Span}(S)$ is a subspace of V;
- for any subspace $W \subset V$ one has

$$
S \subset W \Longrightarrow \operatorname{Span}(S) \subset W
$$

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{F}$.
- If S is an infinite set then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}$, where $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in S$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{F}$ $(k \geq 1)$.
- If S is the empty set then $\operatorname{Span}(S)=\{\mathbf{0}\}$.

Spanning set

Definition. A subset S of a vector space V is called a spanning set for V if $\operatorname{Span}(S)=V$.
Examples.

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ form a spanning set for \mathbb{F}^{3} as

$$
(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3} .
$$

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a spanning set for $\mathcal{M}_{2,2}(\mathbb{F})$ as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{F}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
$x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}=\mathbf{0} \Longrightarrow(x, y, z)=\mathbf{0}$
$\Longrightarrow x=y=z=0$
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$a E_{11}+b E_{12}+c E_{21}+d E_{22}=O \Longrightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$ $\Longrightarrow a=b=c=d=0$

Theorem The following conditions are equivalent:
(i) vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent;
(ii) one of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a linear
combination of the other $k-1$ vectors.
Proof: (i) \Longrightarrow (ii) Suppose that

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where $r_{i} \neq 0$ for some $1 \leq i \leq k$. Then

$$
\mathbf{v}_{i}=-\frac{r_{1}}{r_{i}} \mathbf{v}_{1}-\cdots-\frac{r_{i-1}}{r_{i}} \mathbf{v}_{i-1}-\frac{r_{i+1}}{r_{i}} \mathbf{v}_{i+1}-\cdots-\frac{r_{k}}{r_{i}} \mathbf{v}_{k} .
$$

(ii) \Longrightarrow (i) Suppose that

$$
\mathbf{v}_{i}=s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}
$$

for some scalars s_{j}. Then
$s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}=\mathbf{0}$.

