
MATH 423

Linear Algebra II

Lecture 4:
Span. Spanning set.

Linear independence.



Vector space over a field

The definition of a vector space V over an arbitrary field F is
obtained from the definition of the usual vector space by
changing R to F everywhere in the latter. Namely, the
changes are:

• scalar multiple rx is defined for all r ∈ F and x ∈ V .

• VS6. (rs)x = r(sx) for all r , s ∈ F and x ∈ V .

• VS7. r(x+ y) = rx+ ry for all r ∈F and x, y∈V .

• VS8. (r + s)x = rx+ sx for all r , s ∈F and x∈V .

In what follows, it is okay to assume that F is either R or C.



Subspaces of vector spaces

Definition. A vector space V0 is a subspace of a
vector space V if V0 ⊂ V and the linear operations
on V0 agree with the linear operations on V .

Theorem A subset S of a vector space V is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x, y ∈ S =⇒ x + y ∈ S ,

x ∈ S =⇒ rx ∈ S for all r ∈ F.

Remarks. The zero vector in a subspace is the
same as the zero vector in V . Also, the subtraction
in a subspace agrees with that in V .



Let V be a vector space (over a field F). For any
v ∈ V we denote by Fv the set of all scalar
multiples of the vector v in V : Fv = {rv | r ∈ F}.

Theorem 1 Fv is a subspace of V .

Proof: The set Fv is not empty since F is not empty.
Fv is closed under addition since rv + sv = (r + s)v.
Fv is closed under scaling since s(rv) = (sr)v.



Given two subsets X and Y of V , we define another subset,
denoted X + Y , by X + Y = {x + y | x ∈ X , y ∈ Y }.

Theorem 2 If X and Y are subspaces of V , then X + Y is
also a subspace of V .

Proof: The set X + Y is not empty since X and Y are not
empty. X + Y is closed under addition since X and Y are:

(x + y) + (x′ + y′) = (x + x′) + (y + y′).

X + Y is closed under scaling since X and Y are:

r(x + y) = rx + ry.



For any subsets X1, X2, . . . , Xn of V we define another subset

X1 + X2 + · · · + Xn = {x1 + x2 + · · · + xn | xi ∈ Xi , 1 ≤ i ≤ n}.

Theorem 3 The set X1 + X2 + · · · + Xn is a subspace of V

provided that each Xi is a subspace of V .

Theorem 3 is proved by repeatedly applying Theorem 2. First
X1 + X2 is a subspace. Then X1 + X2 + X3 = (X1 + X2) + X3

is a subspace. Then X1 +X2 +X3 +X4 = (X1 +X2 +X3)+X4

is a subspace, and so on.



Let V be a vector space and v1, v2, . . . , vn ∈ V .
Consider the set L of all linear combinations
r1v1 + r2v2 + · · · + rnvn, where r1, r2, . . . , rn ∈ F.

Theorem 4 L is a subspace of V .

Proof: First of all, L is not empty. For example,
0 = 0v1 + 0v2 + · · · + 0vn belongs to L.

The set L is closed under addition since

(r1v1+r2v2+ · · ·+rnvn) + (s1v1+s2v2+ · · ·+snvn) =
= (r1+s1)v1 + (r2+s2)v2 + · · · + (rn+sn)vn.

The set L is closed under scalar multiplication since

t(r1v1+r2v2+ · · ·+rnvn) = (tr1)v1+(tr2)v2+ · · ·+(trn)vn.

Alternative proof: It is easy to see that

L = Fv1 + Fv2 + · · · + Fvn.

The previous theorems imply that L is a subspace.



Span: implicit definition

Let S be a subset of a vector space V .

Definition. The span of the set S , denoted
Span(S), is the smallest subspace of V that
contains S . That is,

• Span(S) is a subspace of V ;

• for any subspace W ⊂ V one has
S ⊂ W =⇒ Span(S) ⊂ W .

Remark. The span of any set S ⊂ V is well
defined (it is the intersection of all subspaces of V

that contain S).



Span: effective description

Let S be a subset of a vector space V .

• If S = {v1, v2, . . . , vn} then Span(S) is the set
of all linear combinations r1v1 + r2v2 + · · · + rnvn,
where r1, r2, . . . , rn ∈ F.

• If S is an infinite set then Span(S) is the set of
all linear combinations r1u1 + r2u2 + · · · + rkuk ,
where u1,u2, . . . ,uk ∈ S and r1, r2, . . . , rk ∈ F

(k ≥ 1).

• If S is the empty set then Span(S) = {0}.



Spanning set

Definition. A subset S of a vector space V is
called a spanning set for V if Span(S) = V .

Examples.

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) form a spanning set for F

3 as

(x , y , z) = xe1 + ye2 + ze3.

• Matrices

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

form a spanning set for M2,2(F) as
(

a b

c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.



Linear independence

Definition. Let V be a vector space. Vectors
v1, v2, . . . , vk ∈ V are called linearly dependent
if they satisfy a relation

r1v1 + r2v2 + · · · + rkvk = 0,

where the coefficients r1, . . . , rk ∈ F are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are
called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find
some distinct linearly dependent vectors v1, . . . , vk

in S . Otherwise S is linearly independent.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) in R

3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0
=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0
1 0

)

, and E22 =

(

0 0
0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Theorem The following conditions are equivalent:
(i) vectors v1, . . . , vk are linearly dependent;
(ii) one of vectors v1, . . . , vk is a linear
combination of the other k − 1 vectors.

Proof: (i) =⇒ (ii) Suppose that

r1v1 + r2v2 + · · · + rkvk = 0,

where ri 6= 0 for some 1 ≤ i ≤ k . Then

vi = − r1
ri
v1 − · · · − ri−1

ri
vi−1 −

ri+1

ri
vi+1 − · · · − rk

ri
vk .

(ii) =⇒ (i) Suppose that

vi = s1v1 + · · · + si−1vi−1 + si+1vi+1 + · · · + skvk

for some scalars sj . Then

s1v1 + · · · + si−1vi−1 − vi + si+1vi+1 + · · · + skvk = 0.


