MATH 423 Linear Algebra II Lecture 5: Linear independence (continued).

Span

Let V be a vector space over a field \mathbb{F} and let S be a subset of V.

Definition. The **span** of the set S, denoted Span(S), is the smallest subspace $W \subset V$ that contains S.

Theorem If S is not empty then Span(S) consists of all linear combinations $\boxed{r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k}$ such that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in S$ and $r_1, r_2, \ldots, r_k \in \mathbb{F}$. In the case Span(S) = V, we say that the set S **spans** the space V, or that S generates V, or that S is a **spanning set** for V.

Properties of span

Let S_0 and S be subsets of a vector space V.

•
$$S_0 \subset S \implies \operatorname{Span}(S_0) \subset \operatorname{Span}(S)$$
.

•
$$\operatorname{Span}(S_0) = V$$
 and $S_0 \subset S \implies \operatorname{Span}(S) = V$.

• If $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ is a spanning set for V and \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

Indeed, if $\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$, then $t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k = (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k$.

• $\operatorname{Span}(S_0 \cup \{\mathbf{v}_0\}) = \operatorname{Span}(S_0)$ if and only if $\mathbf{v}_0 \in \operatorname{Span}(S_0)$.

If $\mathbf{v}_0 \in \operatorname{Span}(S_0)$, then $S_0 \cup \mathbf{v}_0 \subset \operatorname{Span}(S_0)$, which implies $\operatorname{Span}(S_0 \cup \{\mathbf{v}_0\}) \subset \operatorname{Span}(S_0)$. On the other hand, $\operatorname{Span}(S_0) \subset \operatorname{Span}(S_0 \cup \{\mathbf{v}_0\})$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0}$$
,

where the coefficients $r_1, \ldots, r_k \in \mathbb{F}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=\mathbf{0}.$$

A set $S \subset V$ is **linearly dependent** if one can find some distinct linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in *S*. Otherwise *S* is **linearly independent**.

Examples of linear independence

• Vectors $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ in \mathbb{F}^3 .

• Matrices
$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
 $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ in $\mathcal{M}_{2,2}(\mathbb{F})$.

• Polynomials $1, x, x^2, \ldots, x^n, \ldots$ in \mathcal{P} (or in $\mathbb{F}[x]$).

• The numbers 1 and *i* are linearly independent in \mathbb{C} regarded as a vector space over \mathbb{R} (however they are linearly dependent if \mathbb{C} is regarded as a complex vector space).

• The empty set is always linearly independent.

Properties of linear independence

Let S_0 and S be subsets of a vector space V.

- If $S_0 \subset S$ and S is linearly independent, then so is S_0 .
- If $S_0 \subset S$ and S_0 is linearly dependent, then so is S.

• If S is linearly independent in V and V is a subspace of W, then S is linearly independent in W.

• Any set containing ${f 0}$ is linearly dependent.

• Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$ are linearly dependent if and only if one of them is a linear combination of the other k-1 vectors.

• Two vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent if and only if one of them is a scalar multiple the other.

• Two nonzero vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent if and only if either of them is a scalar multiple the other.

• If S_0 is linearly independent and $\mathbf{v}_0 \in V \setminus S_0$ then $S_0 \cup \{\mathbf{v}_0\}$ is linearly independent if and only if $\mathbf{v}_0 \notin \operatorname{Span}(S)$. **Problem.** Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Solution: Suppose that $af_1(x)+bf_2(x)+cf_3(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

Let us differentiate this identity:

$$ax + bxe^{x} + ce^{-x} = 0,$$

$$a + be^{x} + bxe^{x} - ce^{-x} = 0,$$

$$2be^{x} + bxe^{x} + ce^{-x} = 0,$$

$$3be^{x} + bxe^{x} - ce^{-x} = 0,$$

$$4be^{x} + bxe^{x} + ce^{-x} = 0.$$

(the 5th identity)-(the 3rd identity): $2be^{x} = 0 \implies b = 0$. Substitute b = 0 in the 3rd identity: $ce^{-x} = 0 \implies c = 0$. Substitute b = c = 0 in the 2nd identity: a = 0. **Problem.** Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $ax + bxe^x + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

For any $x \neq 0$ divide both sides of the identity by xe^x :

$$ae^{-x} + b + cx^{-1}e^{-2x} = 0.$$

The left-hand side approaches b as $x \to +\infty$. $\implies b = 0$ Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:

$$a+cx^{-1}e^{-x}=0.$$

The left-hand side approaches *a* as $x \to +\infty$. $\implies a = 0$ Now $ce^{-x} = 0 \implies c = 0$.

Linear independence over \mathbb{Q}

Since the set \mathbb{R} of real numbers and the set \mathbb{Q} of rational numbers are fields, we can regard \mathbb{R} as a vector space over \mathbb{Q} . Real numbers r_1, r_2, \ldots, r_n are said to be **linearly independent over** \mathbb{Q} if they are linearly independent as vectors in that vector space.

Example. 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q} . Assume $a \cdot 1 + b\sqrt{2} = 0$ for some $a, b \in \mathbb{Q}$. We have to show that a = b = 0. Indeed, b = 0 as otherwise $\sqrt{2} = -a/b$, a rational number. Then a = 0 as well.

In general, two nonzero real numbers r_1 and r_2 are linearly independent over \mathbb{Q} if r_1/r_2 is irrational.

Linear independence over \mathbb{Q}

Example. 1, $\sqrt{2}$, and $\sqrt{3}$ are linearly independent over \mathbb{Q} .

Assume $a + b\sqrt{2} + c\sqrt{3} = 0$ for some $a, b, c \in \mathbb{Q}$. We have to show that a = b = c = 0.

$$a + b\sqrt{2} + c\sqrt{3} = 0 \implies a + b\sqrt{2} = -c\sqrt{3}$$
$$\implies (a + b\sqrt{2})^2 = (-c\sqrt{3})^2$$
$$\implies (a^2 + 2b^2 - 3c^2) + 2ab\sqrt{2} = 0.$$

Since 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q} , we obtain $a^2 + 2b^2 - 3c^2 = 2ab = 0$. In particular, a = 0 or b = 0. Then $a + c\sqrt{3} = 0$ or $b\sqrt{2} + c\sqrt{3} = 0$. However 1 and $\sqrt{3}$ are linearly independent over \mathbb{Q} as well as $\sqrt{2}$ and $\sqrt{3}$. Thus a = b = c = 0.