
MATH 423

Linear Algebra II

Lecture 5:

Linear independence (continued).



Span

Let V be a vector space over a field F and let S be
a subset of V .

Definition. The span of the set S , denoted
Span(S), is the smallest subspace W ⊂ V that
contains S .

Theorem If S is not empty then Span(S) consists
of all linear combinations r1v1 + r2v2 + · · · + rkvk

such that v1, v2, . . . , vk ∈ S and r1, r2, . . . , rk ∈ F.

In the case Span(S) = V , we say that the set S

spans the space V , or that S generates V , or that
S is a spanning set for V .



Properties of span

Let S0 and S be subsets of a vector space V .

• S0 ⊂ S =⇒ Span(S0) ⊂ Span(S).

• Span(S0) = V and S0 ⊂ S =⇒ Span(S) = V .

• If v0, v1, . . . , vk is a spanning set for V and v0

is a linear combination of vectors v1, . . . , vk then
v1, . . . , vk is also a spanning set for V .

Indeed, if v0 = r1v1 + · · · + rkvk , then
t0v0 + t1v1 + · · · + tkvk = (t0r1 + t1)v1 + · · · + (t0rk + tk)vk .

• Span(S0 ∪ {v0}) = Span(S0) if and only if
v0 ∈ Span(S0).

If v0 ∈ Span(S0), then S0 ∪ v0 ⊂ Span(S0), which implies
Span(S0 ∪ {v0}) ⊂ Span(S0). On the other hand,
Span(S0) ⊂ Span(S0 ∪ {v0}).



Linear independence

Definition. Let V be a vector space. Vectors
v1, v2, . . . , vk ∈ V are called linearly dependent
if they satisfy a relation

r1v1 + r2v2 + · · · + rkvk = 0,

where the coefficients r1, . . . , rk ∈ F are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are
called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find
some distinct linearly dependent vectors v1, . . . , vk

in S . Otherwise S is linearly independent.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) in
F3.

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0
1 0

)

, and E22 =

(

0 0
0 1

)

in M2,2(F).

• Polynomials 1, x , x2, . . . , xn, . . . in P (or in F[x ]).

• The numbers 1 and i are linearly independent in C

regarded as a vector space over R (however they are linearly
dependent if C is regarded as a complex vector space).

• The empty set is always linearly independent.



Properties of linear independence

Let S0 and S be subsets of a vector space V .

• If S0 ⊂ S and S is linearly independent, then so is S0.

• If S0 ⊂ S and S0 is linearly dependent, then so is S .

• If S is linearly independent in V and V is a subspace of
W , then S is linearly independent in W .

• Any set containing 0 is linearly dependent.

• Vectors v1, . . . , vk ∈ V are linearly dependent if and only if
one of them is a linear combination of the other k − 1 vectors.

• Two vectors v1 and v2 are linearly dependent if and only if
one of them is a scalar multiple the other.

• Two nonzero vectors v1 and v2 are linearly dependent if
and only if either of them is a scalar multiple the other.

• If S0 is linearly independent and v0 ∈ V \ S0 then
S0 ∪ {v0} is linearly independent if and only if v0 /∈ Span(S).



Problem. Show that the functions f1(x) = x , f2(x) = xex ,
and f3(x) = e−x are linearly independent in the vector space
C∞(R).

Solution: Suppose that af1(x)+bf2(x)+cf3(x) = 0 for all
x ∈ R, where a, b, c are constants. We have to show that
a = b = c = 0.

Let us differentiate this identity:

ax + bxex + ce−x = 0,

a + bex + bxex − ce−x = 0,

2bex + bxex + ce−x = 0,

3bex + bxex − ce−x = 0,

4bex + bxex + ce−x = 0.

(the 5th identity)−(the 3rd identity): 2bex = 0 =⇒ b = 0.

Substitute b = 0 in the 3rd identity: ce−x = 0 =⇒ c = 0.

Substitute b = c = 0 in the 2nd identity: a = 0.



Problem. Show that the functions f1(x) = x , f2(x) = xex ,
and f3(x) = e−x are linearly independent in the vector space
C∞(R).

Alternative solution: Suppose that ax + bxex + ce−x = 0 for
all x ∈ R, where a, b, c are constants. We have to show that
a = b = c = 0.

For any x 6= 0 divide both sides of the identity by xex :

ae−x + b + cx−1e−2x = 0.

The left-hand side approaches b as x → +∞. =⇒ b = 0

Now ax + ce−x = 0 for all x ∈ R. For any x 6= 0 divide
both sides of the identity by x :

a + cx−1e−x = 0.

The left-hand side approaches a as x → +∞. =⇒ a = 0

Now ce−x = 0 =⇒ c = 0.



Linear independence over Q

Since the set R of real numbers and the set Q of rational
numbers are fields, we can regard R as a vector space over Q.
Real numbers r1, r2, . . . , rn are said to be linearly
independent over Q if they are linearly independent as
vectors in that vector space.

Example. 1 and
√

2 are linearly independent over Q.

Assume a · 1 + b
√

2 = 0 for some a, b ∈ Q. We have to
show that a = b = 0.

Indeed, b = 0 as otherwise
√

2 = −a/b, a rational number.
Then a = 0 as well.

In general, two nonzero real numbers r1 and r2 are linearly
independent over Q if r1/r2 is irrational.



Linear independence over Q

Example. 1,
√

2, and
√

3 are linearly independent over Q.

Assume a + b
√

2 + c
√

3 = 0 for some a, b, c ∈ Q.
We have to show that a = b = c = 0.

a + b
√

2 + c
√

3 = 0 =⇒ a + b
√

2 = −c
√

3

=⇒ (a + b
√

2)2 = (−c
√

3)2

=⇒ (a2 + 2b2 − 3c2) + 2ab
√

2 = 0.

Since 1 and
√

2 are linearly independent over Q, we obtain
a2 + 2b2 − 3c2 = 2ab = 0. In particular, a = 0 or b = 0.

Then a + c
√

3 = 0 or b
√

2 + c
√

3 = 0. However 1 and
√

3
are linearly independent over Q as well as

√
2 and

√
3. Thus

a = b = c = 0.


