MATH 423
 Linear Algebra II

Lecture 5:

Linear independence (continued).

Span

Let V be a vector space over a field \mathbb{F} and let S be a subset of V.

Definition. The span of the set S, denoted $\operatorname{Span}(S)$, is the smallest subspace $W \subset V$ that contains S.

Theorem If S is not empty then $\operatorname{Span}(S)$ consists of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ such that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in S$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{F}$.

In the case $\operatorname{Span}(S)=V$, we say that the set S spans the space V, or that S generates V, or that S is a spanning set for V.

Properties of span

Let S_{0} and S be subsets of a vector space V.

- $S_{0} \subset S \Longrightarrow \operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}(S)$.
- $\operatorname{Span}\left(S_{0}\right)=V$ and $S_{0} \subset S \Longrightarrow \operatorname{Span}(S)=V$.
- If $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning set for V and \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V. Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then $t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}$.
- $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)=\operatorname{Span}\left(S_{0}\right)$ if and only if $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$.
If $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$, then $S_{0} \cup \mathbf{v}_{0} \subset \operatorname{Span}\left(S_{0}\right)$, which implies $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right) \subset \operatorname{Span}\left(S_{0}\right)$. On the other hand, $\operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{F}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{F}^{3}.
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,
$E_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $E_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{M}_{2,2}(\mathbb{F})$.
- Polynomials $1, x, x^{2}, \ldots, x^{n}, \ldots$ in \mathcal{P} (or in $\mathbb{F}[x]$).
- The numbers 1 and i are linearly independent in \mathbb{C} regarded as a vector space over \mathbb{R} (however they are linearly dependent if \mathbb{C} is regarded as a complex vector space).
- The empty set is always linearly independent.

Properties of linear independence

Let S_{0} and S be subsets of a vector space V.

- If $S_{0} \subset S$ and S is linearly independent, then so is S_{0}.
- If $S_{0} \subset S$ and S_{0} is linearly dependent, then so is S.
- If S is linearly independent in V and V is a subspace of W, then S is linearly independent in W.
- Any set containing $\mathbf{0}$ is linearly dependent.
- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.
- Two vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent if and only if one of them is a scalar multiple the other.
- Two nonzero vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent if and only if either of them is a scalar multiple the other.
- If S_{0} is linearly independent and $\mathbf{v}_{0} \in V \backslash S_{0}$ then $S_{0} \cup\left\{\mathbf{v}_{0}\right\}$ is linearly independent if and only if $\mathbf{v}_{0} \notin \operatorname{Span}(S)$.

Problem. Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.
Solution: Suppose that $a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Let us differentiate this identity:

$$
\begin{gathered}
a x+b x e^{x}+c e^{-x}=0, \\
a+b e^{x}+b x e^{x}-c e^{-x}=0, \\
2 b e^{x}+b x e^{x}+c e^{-x}=0, \\
3 b e^{x}+b x e^{x}-c e^{-x}=0, \\
4 b e^{x}+b x e^{x}+c e^{-x}=0 .
\end{gathered}
$$

(the 5th identity)-(the 3rd identity): $2 b e^{x}=0 \Longrightarrow b=0$.
Substitute $b=0$ in the 3rd identity: $c e^{-x}=0 \Longrightarrow c=0$.
Substitute $b=c=0$ in the 2nd identity: $a=0$.

Problem. Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $a x+b x e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.

For any $x \neq 0$ divide both sides of the identity by $x e^{x}$:

$$
a e^{-x}+b+c x^{-1} e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty . \quad \Longrightarrow b=0$
Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty$.

$$
\Longrightarrow a=0
$$

Now $c e^{-x}=0 \Longrightarrow c=0$.

Linear independence over \mathbb{Q}

Since the set \mathbb{R} of real numbers and the set \mathbb{Q} of rational numbers are fields, we can regard \mathbb{R} as a vector space over \mathbb{Q}. Real numbers $r_{1}, r_{2}, \ldots, r_{n}$ are said to be linearly independent over \mathbb{Q} if they are linearly independent as vectors in that vector space.

Example. 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q}.
Assume $a \cdot 1+b \sqrt{2}=0$ for some $a, b \in \mathbb{Q}$. We have to show that $a=b=0$.
Indeed, $b=0$ as otherwise $\sqrt{2}=-a / b$, a rational number.
Then $a=0$ as well.
In general, two nonzero real numbers r_{1} and r_{2} are linearly independent over \mathbb{Q} if r_{1} / r_{2} is irrational.

Linear independence over \mathbb{Q}

Example. $1, \sqrt{2}$, and $\sqrt{3}$ are linearly independent over \mathbb{Q}.
Assume $a+b \sqrt{2}+c \sqrt{3}=0$ for some $a, b, c \in \mathbb{Q}$.
We have to show that $a=b=c=0$.

$$
\begin{gathered}
a+b \sqrt{2}+c \sqrt{3}=0 \Longrightarrow a+b \sqrt{2}=-c \sqrt{3} \\
\Longrightarrow(a+b \sqrt{2})^{2}=(-c \sqrt{3})^{2} \\
\Longrightarrow\left(a^{2}+2 b^{2}-3 c^{2}\right)+2 a b \sqrt{2}=0 .
\end{gathered}
$$

Since 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q}, we obtain $a^{2}+2 b^{2}-3 c^{2}=2 a b=0$. In particular, $a=0$ or $b=0$.
Then $a+c \sqrt{3}=0$ or $b \sqrt{2}+c \sqrt{3}=0$. However 1 and $\sqrt{3}$ are linearly independent over \mathbb{Q} as well as $\sqrt{2}$ and $\sqrt{3}$. Thus $a=b=c=0$.

