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Linear Algebra II

Lecture 6:
Basis and dimension.



Basis

Definition. Let V be a vector space. A linearly
independent spanning set for V is called a basis.

Theorem A nonempty set S ⊂ V is a basis for V

if and only if any vector v ∈ V is uniquely
represented as a linear combination

v = r1v1 + r2v2 + · · ·+ rkvk , where v1, . . . , vk are
distinct vectors from S and r1, . . . , rk ∈ F.

Remark on uniqueness. Expansions v = 2v1 − v2,
v = −v2 + 2v1, and v = 2v1 − v2 + 0v3 are considered the
same.



Theorem A nonempty set S ⊂ V is a basis for V if and
only if any vector v ∈ V is uniquely represented as a linear
combination v = r1v1 + r2v2 + · · ·+ rkvk , where v1, . . . , vk
are distinct vectors from S and r1, . . . , rk ∈ F.

Proof (“if”): Assume that any vector in V admits a unique
expansion as described above. Then Span(S) = V so that S
is a spanning set.

Further, suppose 0 = r1v1 + r2v2 + · · ·+ rkvk for some
distinct vectors v1, . . . , vk ∈ S . Since we also have
0 = 0v1 + 0v2 + · · ·+ 0vk , the uniqueness implies ri = 0,
1 ≤ i ≤ k. Therefore S is linearly independent.

Thus S is a basis.



Theorem A nonempty set S ⊂ V is a basis for V if and
only if any vector v ∈ V is uniquely represented as a linear
combination v = r1v1 + r2v2 + · · ·+ rkvk , where v1, . . . , vk
are distinct vectors from S and r1, . . . , rk ∈ F.

Proof (“only if”): Assume that S is a basis. Since S is a
spanning set for V , any vector v ∈ V admits an expansion
v = r1v1 + r2v2 + · · ·+ rkvk , where v1, . . . , vk are distinct
vectors from S and ri ∈ F. Suppose that we also have
v = s1u1 + s2u2 + · · ·+ smum, for some distinct vectors
u1, . . . , um ∈ S and some scalars sj ∈ F. Without loss of
generality we can assume that m = k and ui = vi , 1 ≤ i ≤ k
(this can be achieved by adding terms of the form 0w to both
expansions and rearranging terms in one of them). Then

r1v1 + r2v2 + · · ·+ rkvk = s1v1 + s2v2 + · · ·+ skvk ,

which implies (r1 − s1)v1 + (r2 − s2)v2 + · · ·+ (rk − sk)vk = 0.
Since the vectors v1, . . . , vk are linearly independent, we
obtain r1 − s1 = r2 − s2 = . . . = rk − sk = 0, i.e., the two
expansions are the same.



Examples. • Standard basis for Fn:

e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),. . . ,
en = (0, 0, 0, . . . , 0, 1).

• Matrices

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

form a basis for M2,2(F).

• Polynomials 1, x , x2, . . . , xn form a basis for

Pn = {a0 + a1x + · · ·+ anx
n | ai ∈ R}.

• The infinite set {1, x , x2, . . . , xn, . . . } is a basis
for P , the space of all polynomials.

• The empty set is a basis for the zero vector

space {0}.



Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis,

then all bases for V are finite and have the same
number of elements.

Definition. The dimension of a vector space V ,
denoted dimV , (or dimF V ) is the number of

elements in any of its bases.



Examples. • dimFn = n

• M2,2(F): the space of 2×2 matrices

dimM2,2(F) = 4

• Mm,n(F): the space of m×n matrices

dimMm,n(F) = mn

• Pn: polynomials of degree at most n
dimPn = n + 1

• P : the space of all polynomials
dimP = ∞

• C: complex numbers
dimCC = 1, dimRC = 2

• {0}: the trivial vector space

dim {0} = 0



Problem. Find the dimension of the plane

x + 2z = 0 in R
3.

The general solution of the equation x + 2z = 0 is






x = −2s
y = t

z = s

(t, s ∈ R)

That is, (x , y , z) = (−2s, t, s) = t(0, 1, 0) + s(−2, 0, 1).

Hence the plane is the span of vectors v1 = (0, 1, 0)
and v2 = (−2, 0, 1). These vectors are linearly

independent as they are not parallel.

Thus {v1, v2} is a basis so that the dimension of
the plane is 2.



Replacement Theorem

Theorem Suppose S is a spanning set for a vector space V
and v1, v2, . . . , vk are linearly independent vectors in V .
Then one can replace some k vectors in S by vectors
v1, v2, . . . , vk so that the new set still spans V .

Corollary 1 A linearly independent set cannot have more
vectors than a spanning set.

Corollary 2 If a vector space has a finite basis consisting of n
vectors, then
• any spanning set has at least n vectors;
• any linearly independent set has at most n vectors;
• any basis has exactly n vectors.



How to find a basis?

Theorem Let S be a subset of a vector space V .
Then the following conditions are equivalent:

(i) S is a linearly independent spanning set for V ,
i.e., a basis;

(ii) S is a minimal spanning set for V ;

(iii) S is a maximal linearly independent subset of V .

“Minimal spanning set” means “remove any element from this
set, and it is no longer a spanning set”.

“Maximal linearly independent subset” means “add any
element of V to this set, and it will become linearly
dependent”.



Part of the proof: (ii) =⇒ (i), (iii) =⇒ (i)

Lemma 1 If a set S is linearly dependent then one of vectors
in S is a linear combination of the others, or else S = {0}.

Lemma 2 Let v0, v1, . . . , vk be a spanning set for a vector
space V . If v0 is a linear combination of vectors v1, . . . , vk
then v1, . . . , vk is also a spanning set for V .

(ii) =⇒ (i): If a spanning set S is not a basis, it is linearly
dependent. By Lemma 1, some v ∈ S is a linear combination
of the other vectors in S , or else S = {0}. In the first case,
S \ {v} is a spanning set by Lemma 2. In the second case,
V = {0} so that the empty set is a spanning set. In either
case, S is not a minimal spanning set.

(iii) =⇒ (i): If a linearly independent set S is not a basis, it
is not a spanning set for V . Take any vector v ∈ V not in
Span(S). Then the set S ∪ {v} is linearly independent so
that S is not maximal.



How to find a basis?

Theorem Let V be a vector space. Then

(i) any spanning set for V can be reduced to a
minimal spanning set;

(ii) any linearly independent subset of V can be

extended to a maximal linearly independent set.

Corollary Any spanning set contains a basis while
any linearly independent set is contained in a basis.



How to find a basis?

Approach 1. Get a spanning set for the vector
space, then reduce this set to a basis dropping one

vector at a time.

Theorem A vector space has a finite basis
whenever it has a finite spanning set.

Proof: Suppose S is a finite spanning set for a vector space
V . If S is not a minimal spanning set, then we can drop one
vector from S so that the new set S1 also spans V . If S1 is
still not minimal, we can drop one more vector to obtain yet
another spanning set S2. And so on. . . Since S is a finite set,
this inductive procedure will eventually produce a minimal
spanning set, i.e., a basis for V .



How to find a basis?

Approach 2. Build a maximal linearly independent
set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If
V 6= {0}, pick any vector v1 6= 0. If v1 spans V , it is a
basis. Otherwise pick any vector v2 ∈ V that is not in the
span of v1. If v1 and v2 span V , they constitute a basis.
Otherwise pick any vector v3 ∈ V that is not in the span of
v1 and v2. And so on. . .

Modifications. Instead of the empty set, we can start with any
linearly independent set (if we are given one). If we are given
a spanning set S , it is enough to pick new vectors only in S .

Remark. This inductive procedure works for finite-dimensional
vector spaces. There is an analogous procedure for
infinite-dimensional spaces (transfinite induction).



Vectors v1 = (0, 1, 0) and v2 = (−2, 0, 1) are
linearly independent in R3.

Problem. Extend the set {v1, v2} to a basis for R3.

Our task is to find a vector v3 that is not a linear combination
of v1 and v2. Then {v1, v2, v3} will be a basis for R3.

Since vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1)
form a spanning set for R3, at least one of them can be
chosen as v3.

One can check that {v1, v2, e1} and {v1, v2, e3} are two
bases for R3:
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