MATH 423
 Linear Algebra II

Lecture 6:

Basis and dimension.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination
$\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{F}$.

Remark on uniqueness. Expansions $\mathbf{v}=2 \mathbf{v}_{1}-\mathbf{v}_{2}$, $\mathbf{v}=-\mathbf{v}_{2}+2 \mathbf{v}_{1}$, and $\mathbf{v}=2 \mathbf{v}_{1}-\mathbf{v}_{2}+0 \mathbf{v}_{3}$ are considered the same.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{F}$.

Proof ("if"): Assume that any vector in V admits a unique expansion as described above. Then $\operatorname{Span}(S)=V$ so that S is a spanning set.
Further, suppose $\mathbf{0}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ for some distinct vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$. Since we also have $\mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{k}$, the uniqueness implies $r_{i}=0$, $1 \leq i \leq k$. Therefore S is linearly independent.
Thus S is a basis.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{F}$.

Proof ("only if"): Assume that S is a basis. Since S is a spanning set for V, any vector $\mathbf{v} \in V$ admits an expansion $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{i} \in \mathbb{F}$. Suppose that we also have $\mathbf{v}=s_{1} \mathbf{u}_{1}+s_{2} \mathbf{u}_{2}+\cdots+s_{m} \mathbf{u}_{m}$, for some distinct vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m} \in S$ and some scalars $s_{j} \in \mathbb{F}$. Without loss of generality we can assume that $m=k$ and $\mathbf{u}_{i}=\mathbf{v}_{i}, 1 \leq i \leq k$ (this can be achieved by adding terms of the form $0 \mathbf{w}$ to both expansions and rearranging terms in one of them). Then

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{k} \mathbf{v}_{k}
$$

which implies $\left(r_{1}-s_{1}\right) \mathbf{v}_{1}+\left(r_{2}-s_{2}\right) \mathbf{v}_{2}+\cdots+\left(r_{k}-s_{k}\right) \mathbf{v}_{k}=\mathbf{0}$.
Since the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent, we obtain $r_{1}-s_{1}=r_{2}-s_{2}=\ldots=r_{k}-s_{k}=0$, i.e., the two expansions are the same.

Examples. - Standard basis for \mathbb{F}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{F})$.
- Polynomials $1, x, x^{2}, \ldots, x^{n}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.
- The empty set is a basis for the zero vector space $\{\mathbf{0}\}$.

Dimension

Theorem 1 Any vector space has a basis.
Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, (or $\operatorname{dim}_{\mathbb{F}} V$) is the number of elements in any of its bases.

Examples. • $\operatorname{dim} \mathbb{F}^{n}=n$

- $\mathcal{M}_{2,2}(\mathbb{F})$: the space of 2×2 matrices $\operatorname{dim} \mathcal{M}_{2,2}(\mathbb{F})=4$
- $\mathcal{M}_{m, n}(\mathbb{F})$: the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{F})=m n$
- \mathcal{P}_{n} : polynomials of degree at most n $\operatorname{dim} \mathcal{P}_{n}=n+1$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- \mathbb{C} : complex numbers $\operatorname{dim}_{\mathbb{C}} \mathbb{C}=1, \operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Problem. Find the dimension of the plane $x+2 z=0$ in \mathbb{R}^{3}.

The general solution of the equation $x+2 z=0$ is
$\left\{\begin{array}{l}x=-2 s \\ y=t \\ z=s\end{array}\right.$

$$
(t, s \in \mathbb{R})
$$

That is, $(x, y, z)=(-2 s, t, s)=t(0,1,0)+s(-2,0,1)$. Hence the plane is the span of vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$. These vectors are linearly independent as they are not parallel.
Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis so that the dimension of the plane is 2 .

Replacement Theorem

Theorem Suppose S is a spanning set for a vector space V and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent vectors in V. Then one can replace some k vectors in S by vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ so that the new set still spans V.

Corollary 1 A linearly independent set cannot have more vectors than a spanning set.

Corollary 2 If a vector space has a finite basis consisting of n vectors, then

- any spanning set has at least n vectors;
- any linearly independent set has at most n vectors;
- any basis has exactly n vectors.

How to find a basis?

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:
(i) S is a linearly independent spanning set for V, i.e., a basis;
(ii) S is a minimal spanning set for V;
(iii) S is a maximal linearly independent subset of V.
"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".
"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Part of the proof: $($ ii $) \Longrightarrow(\mathbf{i}),(i i i) \Longrightarrow$ (i)

Lemma 1 If a set S is linearly dependent then one of vectors in S is a linear combination of the others, or else $S=\{\mathbf{0}\}$.
Lemma 2 Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a spanning set for a vector space V. If \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V.
(ii) $\Longrightarrow \mathbf{(i) : ~ I f ~ a ~ s p a n n i n g ~ s e t ~} S$ is not a basis, it is linearly dependent. By Lemma 1 , some $\mathbf{v} \in S$ is a linear combination of the other vectors in S, or else $S=\{\mathbf{0}\}$. In the first case, $S \backslash\{\mathbf{v}\}$ is a spanning set by Lemma 2. In the second case, $V=\{\mathbf{0}\}$ so that the empty set is a spanning set. In either case, S is not a minimal spanning set.
(iii) \Longrightarrow (i): If a linearly independent set S is not a basis, it is not a spanning set for V. Take any vector $\mathbf{v} \in V$ not in $\operatorname{Span}(S)$. Then the set $S \cup\{\mathbf{v}\}$ is linearly independent so that S is not maximal.

How to find a basis?

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Corollary Any spanning set contains a basis while any linearly independent set is contained in a basis.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis dropping one vector at a time.

Theorem A vector space has a finite basis whenever it has a finite spanning set.

Proof: Suppose S is a finite spanning set for a vector space V. If S is not a minimal spanning set, then we can drop one vector from S so that the new set S_{1} also spans V. If S_{1} is still not minimal, we can drop one more vector to obtain yet another spanning set S_{2}. And so on... Since S is a finite set, this inductive procedure will eventually produce a minimal spanning set, i.e., a basis for V.

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If $V \neq\{\mathbf{0}\}$, pick any vector $\mathbf{v}_{1} \neq \mathbf{0}$. If \mathbf{v}_{1} spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_{2} \in V$ that is not in the span of \mathbf{v}_{1}. If \mathbf{v}_{1} and \mathbf{v}_{2} span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_{3} \in V$ that is not in the span of \mathbf{v}_{1} and \mathbf{v}_{2}. And so on...
Modifications. Instead of the empty set, we can start with any linearly independent set (if we are given one). If we are given a spanning set S, it is enough to pick new vectors only in S.
Remark. This inductive procedure works for finite-dimensional vector spaces. There is an analogous procedure for infinite-dimensional spaces (transfinite induction).

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent in \mathbb{R}^{3}.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}.
Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ will be a basis for \mathbb{R}^{3}.
Since vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ form a spanning set for \mathbb{R}^{3}, at least one of them can be chosen as \mathbf{v}_{3}.
One can check that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{1}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}\right\}$ are two bases for \mathbb{R}^{3} :

$$
\left|\begin{array}{rrr}
0 & -2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=1 \neq 0, \quad\left|\begin{array}{rrr}
0 & -2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=2 \neq 0 .
$$

