MATH 423 Linear Algebra II Lecture 6: Basis and dimension.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is *uniquely represented* as a linear combination $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{F}$.

Remark on uniqueness. Expansions $\mathbf{v} = 2\mathbf{v}_1 - \mathbf{v}_2$, $\mathbf{v} = -\mathbf{v}_2 + 2\mathbf{v}_1$, and $\mathbf{v} = 2\mathbf{v}_1 - \mathbf{v}_2 + 0\mathbf{v}_3$ are considered the same. **Theorem** A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is *uniquely represented* as a linear combination $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{F}$.

Proof ("if"): Assume that any vector in V admits a unique expansion as described above. Then Span(S) = V so that S is a spanning set.

Further, suppose $\mathbf{0} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \cdots + r_k \mathbf{v}_k$ for some distinct vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in S$. Since we also have $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_k$, the uniqueness implies $r_i = 0$, $1 \le i \le k$. Therefore S is linearly independent.

Thus S is a basis.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is *uniquely represented* as a linear combination $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{F}$.

Proof ("only if"): Assume that S is a basis. Since S is a spanning set for V, any vector $\mathbf{v} \in V$ admits an expansion $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_i \in \mathbb{F}$. Suppose that we also have $\mathbf{v} = s_1\mathbf{u}_1 + s_2\mathbf{u}_2 + \cdots + s_m\mathbf{u}_m$, for some distinct vectors $\mathbf{u}_1, \ldots, \mathbf{u}_m \in S$ and some scalars $s_j \in \mathbb{F}$. Without loss of generality we can assume that m = k and $\mathbf{u}_i = \mathbf{v}_i$, $1 \le i \le k$ (this can be achieved by adding terms of the form 0w to both expansions and rearranging terms in one of them). Then

 $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k = s_1\mathbf{v}_1 + s_2\mathbf{v}_2 + \cdots + s_k\mathbf{v}_k$, which implies $(r_1 - s_1)\mathbf{v}_1 + (r_2 - s_2)\mathbf{v}_2 + \cdots + (r_k - s_k)\mathbf{v}_k = \mathbf{0}$. Since the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent, we obtain $r_1 - s_1 = r_2 - s_2 = \ldots = r_k - s_k = 0$, i.e., the two expansions are the same. Examples. • Standard basis for \mathbb{F}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots, \ \mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$

- Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a basis for $\mathcal{M}_{2,2}(\mathbb{F})$.
- Polynomials $1, x, x^2, \dots, x^n$ form a basis for $\mathcal{P}_n = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in \mathbb{R}\}.$
- The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.

• The empty set is a basis for the zero vector space $\{\boldsymbol{0}\}.$

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, (or dim_{\mathbb{F}} V) is the number of elements in any of its bases.

Examples. • dim $\mathbb{F}^n = n$

• $\mathcal{M}_{2,2}(\mathbb{F})$: the space of 2×2 matrices dim $\mathcal{M}_{2,2}(\mathbb{F}) = 4$

• $\mathcal{M}_{m,n}(\mathbb{F})$: the space of $m \times n$ matrices dim $\mathcal{M}_{m,n}(\mathbb{F}) = mn$

• \mathcal{P}_n : polynomials of degree at most ndim $\mathcal{P}_n = n + 1$

• $\mathcal{P}:$ the space of all polynomials $\dim \mathcal{P} = \infty$

• \mathbb{C} : complex numbers dim $_{\mathbb{C}} \mathbb{C} = 1$, dim $_{\mathbb{R}} \mathbb{C} = 2$

•
$$\{\mathbf{0}\}$$
: the trivial vector space dim $\{\mathbf{0}\} = 0$

Problem. Find the dimension of the plane x + 2z = 0 in \mathbb{R}^3 .

The general solution of the equation x + 2z = 0 is

$$\left\{egin{array}{ll} x=-2s\ y=t\ z=s\end{array}
ight.$$

That is, (x, y, z) = (-2s, t, s) = t(0, 1, 0) + s(-2, 0, 1). Hence the plane is the span of vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$. These vectors are linearly independent as they are not parallel.

Thus $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis so that the dimension of the plane is 2.

Replacement Theorem

Theorem Suppose S is a spanning set for a vector space V and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent vectors in V. Then one can replace some k vectors in S by vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ so that the new set still spans V.

Corollary 2 If a vector space has a finite basis consisting of n vectors, then

- any spanning set has at least *n* vectors;
- any linearly independent set has at most *n* vectors;
- any basis has exactly *n* vectors.

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:

- (i) S is a linearly independent spanning set for V, i.e., a basis;
- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".

"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Part of the proof: (ii) \Longrightarrow (i), (iii) \Longrightarrow (i)

Lemma 1 If a set S is linearly dependent then one of vectors in S is a linear combination of the others, or else $S = \{0\}$.

Lemma 2 Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ be a spanning set for a vector space V. If \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

(ii) \implies (i): If a spanning set S is not a basis, it is linearly dependent. By Lemma 1, some $\mathbf{v} \in S$ is a linear combination of the other vectors in S, or else $S = \{\mathbf{0}\}$. In the first case, $S \setminus \{\mathbf{v}\}$ is a spanning set by Lemma 2. In the second case, $V = \{\mathbf{0}\}$ so that the empty set is a spanning set. In either case, S is not a minimal spanning set.

(iii) \implies (i): If a linearly independent set S is not a basis, it is not a spanning set for V. Take any vector $\mathbf{v} \in V$ not in $\operatorname{Span}(S)$. Then the set $S \cup \{\mathbf{v}\}$ is linearly independent so that S is not maximal.

Theorem Let V be a vector space. Then (i) any spanning set for V can be reduced to a minimal spanning set;

(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Corollary Any spanning set contains a basis while any linearly independent set is contained in a basis.

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis dropping one vector at a time.

Theorem A vector space has a finite basis whenever it has a finite spanning set.

Proof: Suppose S is a finite spanning set for a vector space V. If S is not a minimal spanning set, then we can drop one vector from S so that the new set S_1 also spans V. If S_1 is still not minimal, we can drop one more vector to obtain yet another spanning set S_2 . And so on... Since S is a finite set, this inductive procedure will eventually produce a minimal spanning set, i.e., a basis for V.

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If $V \neq \{\mathbf{0}\}$, pick any vector $\mathbf{v}_1 \neq \mathbf{0}$. If \mathbf{v}_1 spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_2 \in V$ that is not in the span of \mathbf{v}_1 . If \mathbf{v}_1 and \mathbf{v}_2 span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_3 \in V$ that is not in the span of \mathbf{v}_1 and \mathbf{v}_2 . And so on...

Modifications. Instead of the empty set, we can start with any linearly independent set (if we are given one). If we are given a spanning set S, it is enough to pick new vectors only in S.

Remark. This inductive procedure works for finite-dimensional vector spaces. There is an analogous procedure for infinite-dimensional spaces (**transfinite induction**).

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent in \mathbb{R}^3 .

Problem. Extend the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Since vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ form a spanning set for \mathbb{R}^3 , at least one of them can be chosen as \mathbf{v}_3 .

One can check that $\{\bm{v}_1,\bm{v}_2,\bm{e}_1\}$ and $\{\bm{v}_1,\bm{v}_2,\bm{e}_3\}$ are two bases for \mathbb{R}^3 :

$$\begin{vmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 1 \neq 0, \qquad \begin{vmatrix} 0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0.$$