MATH 423
 Linear Algebra II

Lecture 7:

Linear transformations.
Range and null-space.

Linear mapping $=$ linear transformation

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear (or \mathbb{F}-linear) if

$$
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})
$$

$$
L(r \mathbf{x})=r L(\mathbf{x})
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{F}$.
A linear mapping $\ell: V \rightarrow \mathbb{F}$ is called a linear functional on V.

If $V_{1}=V_{2}$ (or if both V_{1} and V_{2} are functional spaces) then a linear mapping $L: V_{1} \rightarrow V_{2}$ is called a linear operator.

Linear mapping $=$ linear transformation

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear (or \mathbb{F}-linear) if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{F}$.
Remark. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x+b$ is a linear transformation of the vector space \mathbb{R} only if $b=0$.

Basic properties of linear mappings

Let $L: V_{1} \rightarrow V_{2}$ be a linear mapping.

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{F}$.
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)=L\left(r_{1} \mathbf{v}_{1}\right)+L\left(r_{2} \mathbf{v}_{2}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)$,
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}\right)=L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)+L\left(r_{3} \mathbf{v}_{3}\right)=$ $=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)+r_{3} L\left(\mathbf{v}_{3}\right)$, and so on.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
$L\left(\mathbf{0}_{1}\right)=L\left(0 \mathbf{0}_{1}\right)=0 L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.
$L(-\mathbf{v})=L((-1) \mathbf{v})=(-1) L(\mathbf{v})=-L(\mathbf{v})$.

Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{F}$. $L(\mathbf{x}+\mathbf{y})=s(\mathbf{x}+\mathbf{y})=s \mathbf{x}+s \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=s(r \mathbf{x})=(s r) \mathbf{x}=r(s \mathbf{x})=r L(\mathbf{x})$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$. $\ell(\mathbf{x}+\mathbf{y})=(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}_{0}=\mathbf{x} \cdot \mathbf{v}_{0}+\mathbf{y} \cdot \mathbf{v}_{0}=\ell(\mathbf{x})+\ell(\mathbf{y})$, $\ell(r \mathbf{x})=(r \mathbf{x}) \cdot \mathbf{v}_{0}=r\left(\mathbf{x} \cdot \mathbf{v}_{0}\right)=r \ell(\mathbf{x})$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: \mathcal{F}(S) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in S$.
- Multiplication by a fixed function $L: \mathcal{F}(\mathbb{R}) \rightarrow \mathcal{F}(\mathbb{R}), \quad L(f)=g f$, where $g \in \mathcal{F}(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(f)=f^{\prime}$.
$D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$, $D(r f)=(r f)^{\prime}=r f^{\prime}=r D(f)$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.
$\mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices.
- $\alpha: \mathcal{M}_{m, n}(\mathbb{R}) \rightarrow \mathcal{M}_{n, m}(\mathbb{R}), \quad \alpha(A)=A^{t}$, transpose of A.
$\alpha(A+B)=\alpha(A)+\alpha(B) \Longleftrightarrow(A+B)^{t}=A^{t}+B^{t}$.
$\alpha(r A)=r \alpha(A) \Longleftrightarrow(r A)^{t}=r A^{t}$.
Hence α is linear.
- $\beta: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathbb{R}, \quad \beta(A)=\operatorname{det} A$.

Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
Then $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
We have $\operatorname{det}(A)=\operatorname{det}(B)=0$ while $\operatorname{det}(A+B)=1$. Hence $\beta(A+B) \neq \beta(A)+\beta(B)$ so that β is not linear.

More properties of linear mappings

- If a linear mapping $L: V \rightarrow W$ is invertible then the inverse mapping $L^{-1}: W \rightarrow V$ is also linear.
Given vectors $\mathbf{w}_{1}, \mathbf{w}_{2} \in W$, let $\mathbf{v}_{1}=L^{-1}\left(\mathbf{w}_{1}\right), \mathbf{v}_{2}=L^{-1}\left(\mathbf{w}_{2}\right)$.
Since L is linear, $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{w}_{1}+\mathbf{w}_{2}$.
That is, $L^{-1}\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=\mathbf{v}_{1}+\mathbf{v}_{2}=L^{-1}\left(\mathbf{w}_{1}\right)+L^{-1}\left(\mathbf{w}_{2}\right)$.
Given a vector $\mathbf{w} \in W$, let $\mathbf{v}=L^{-1}(\mathbf{w})$. Since L is linear, for any scalar r we have $L(r \mathbf{v})=r L(\mathbf{v})=r \mathbf{w}$. That is,
$L^{-1}(r \mathbf{w})=r \mathbf{v}=r L^{-1}(\mathbf{w})$.
- If $L: V \rightarrow W$ and $M: W \rightarrow X$ are linear mappings then the composition $M \circ L: V \rightarrow X$ is also linear.

$$
\begin{aligned}
& (M \circ L)\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=M\left(L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=M\left(L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)\right) \\
& =M\left(L\left(\mathbf{v}_{1}\right)\right)+M\left(L\left(\mathbf{v}_{2}\right)\right)=(M \circ L)\left(\mathbf{v}_{1}\right)+(M \circ L)\left(\mathbf{v}_{2}\right) . \\
& (M \circ L)(r \mathbf{v})=M(L(r \mathbf{v}))=M(r L(\mathbf{v}))=r M(L(\mathbf{v})) .
\end{aligned}
$$

Vector space of linear transformations

Let W be a vector space over a field \mathbb{F}. For any nonempty set S let $\mathcal{F}(S, W)$ denote the set of all mappings $f: S \rightarrow W$. The set $\mathcal{F}(S, W)$ is naturally endowed with the structure of a vector space over \mathbb{F} (this was already done before in the case $W=\mathbb{R})$. Namely, for any functions $f, g \in \mathcal{F}(S, W)$ we define the sum $f+g$ by $(f+g)(x)=f(x)+g(x), x \in S$. For any function $f \in \mathcal{F}(S, W)$ and scalar $r \in \mathbb{F}$ we define the scalar multiple of by $(r f)(x)=r \cdot f(x), x \in S$.

For any vector space V over \mathbb{F} we denote by $\mathcal{L}(V, W)$ a subset of $\mathcal{F}(V, W)$ consisting of all linear transformations from V to W.

Theorem $\mathcal{L}(V, W)$ is a subspace of $\mathcal{F}(V, W)$.

Examples of linear differential operators

- an ordinary differential operator

$$
L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2}
$$

where g_{0}, g_{1}, g_{2} are smooth functions on \mathbb{R}.
That is, $L(f)=g_{0} f^{\prime \prime}+g_{1} f^{\prime}+g_{2} f$.

- Laplace's operator $\Delta: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

(a.k.a. the Laplacian; also denoted by ∇^{2}).

Range and null-space

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $\mathcal{R}(L)$ (or $L(V)$). The null-space (or kernel) of L, denoted $\mathcal{N}(L)$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range $\mathcal{R}(L)$ is a subspace of W. (ii) The null-space $\mathcal{N}(L)$ is a subspace of V. $\operatorname{dim} \mathcal{R}(L)$ is called the rank of the transformation L. $\operatorname{dim} \mathcal{N}(L)$ is called the nullity of L.

Dimension Theorem

Theorem Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Then $\operatorname{dim} \mathcal{R}(L)+\operatorname{dim} \mathcal{N}(L)=\operatorname{dim} V$.

The null-space $\mathcal{N}(L)$ is a subspace of V. It is finite-dimensional since the vector space V is.
Take a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ for the subspace $\mathcal{N}(L)$, then extend it to a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ for the entire space V.
Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Assuming the claim is proved, we obtain $\operatorname{dim} \mathcal{R}(L)=m, \quad \operatorname{dim} \mathcal{N}(L)=k, \quad \operatorname{dim} V=k+m$.

Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Proof (spanning): Any vector $\mathbf{w} \in \mathcal{R}(L)$ is represented as $\mathbf{w}=L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}+\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\cdots+\beta_{m} \mathbf{u}_{m}
$$

for some $\alpha_{i}, \beta_{j} \in \mathbb{F}$. It follows that

$$
\begin{gathered}
\mathbf{w}=L(\mathbf{v})=\alpha_{1} L\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{k} L\left(\mathbf{v}_{k}\right)+\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right) \\
=\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right) .
\end{gathered}
$$

Note that $L\left(\mathbf{v}_{i}\right)=\mathbf{0}$ since $\mathbf{v}_{i} \in \mathcal{N}(L)$.
Thus $\mathcal{R}(L)$ is spanned by the vectors $L\left(\mathbf{u}_{1}\right), \ldots, L\left(\mathbf{u}_{m}\right)$.

Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Proof (linear independence): Assume that

$$
t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0}
$$

for some $t_{i} \in \mathbb{F}$. Let $\mathbf{u}=t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}$. Since

$$
L(\mathbf{u})=t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0},
$$

the vector \mathbf{u} belongs to the null-space of L. Therefore $\mathbf{u}=s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{k} \mathbf{v}_{k}$ for some $s_{j} \in \mathbb{F}$. It follows that $t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}-s_{1} \mathbf{v}_{1}-s_{2} \mathbf{v}_{2}-\cdots-s_{k} \mathbf{v}_{k}=\mathbf{u}-\mathbf{u}=\mathbf{0}$.

Linear independence of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ implies that $t_{1}=\cdots=t_{m}=0$ (as well as $s_{1}=\cdots=s_{k}=0$). Thus the vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ are linearly independent.

