MATH 423 Linear Algebra II Lecture 7: Linear transformations.

Range and null-space.

Linear mapping = linear transformation

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** (or \mathbb{F} -linear) if

$$\frac{L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),}{L(r\mathbf{x}) = rL(\mathbf{x})}$$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{F}$.

A linear mapping $\ell: V \to \mathbb{F}$ is called a **linear** functional on V.

If $V_1 = V_2$ (or if both V_1 and V_2 are functional spaces) then a linear mapping $L: V_1 \rightarrow V_2$ is called a **linear operator**.

Linear mapping = linear transformation

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** (or \mathbb{F} -linear) if

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),$$
$$L(r\mathbf{x}) = rL(\mathbf{x})$$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{F}$.

Remark. A function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b is a linear transformation of the vector space \mathbb{R} only if b = 0.

Basic properties of linear mappings

Let $L: V_1 \rightarrow V_2$ be a linear mapping. • $L(r_1\mathbf{v}_1 + \dots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \dots + r_kL(\mathbf{v}_k)$ for all $k \ge 1$, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{F}$. $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) = L(r_1\mathbf{v}_1) + L(r_2\mathbf{v}_2) = r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2)$, $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3) = L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) + L(r_3\mathbf{v}_3) =$ $= r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2) + r_3L(\mathbf{v}_3)$, and so on.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

 $L(\mathbf{0}_1) = L(0\mathbf{0}_1) = 0L(\mathbf{0}_1) = \mathbf{0}_2.$

•
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
 for any $\mathbf{v} \in V_1$.
 $L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v})$.

Examples of linear mappings

• Scaling
$$L: V \rightarrow V$$
, $L(\mathbf{v}) = s\mathbf{v}$, where $s \in \mathbb{F}$.
 $L(\mathbf{x} + \mathbf{y}) = s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y} = L(\mathbf{x}) + L(\mathbf{y})$,
 $L(r\mathbf{x}) = s(r\mathbf{x}) = (sr)\mathbf{x} = r(s\mathbf{x}) = rL(\mathbf{x})$.

• Dot product with a fixed vector $\ell : \mathbb{R}^n \to \mathbb{R}, \ \ell(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^n.$ $\ell(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{v}_0 = \mathbf{x} \cdot \mathbf{v}_0 + \mathbf{y} \cdot \mathbf{v}_0 = \ell(\mathbf{x}) + \ell(\mathbf{y}),$ $\ell(r\mathbf{x}) = (r\mathbf{x}) \cdot \mathbf{v}_0 = r(\mathbf{x} \cdot \mathbf{v}_0) = r\ell(\mathbf{x}).$

• Cross product with a fixed vector $L : \mathbb{R}^3 \to \mathbb{R}^3$, $L(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0$, where $\mathbf{v}_0 \in \mathbb{R}^3$.

• Multiplication by a fixed matrix $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{v}) = A\mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

• Evaluation at a fixed point
$$\ell : \mathcal{F}(S) \to \mathbb{R}, \ \ell(f) = f(a), \text{ where } a \in S.$$

• Multiplication by a fixed function $L : \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R}), \ L(f) = gf, \text{ where } g \in \mathcal{F}(\mathbb{R}).$

• Differentiation $D: C^1(\mathbb{R}) \to C(\mathbb{R}), L(f) = f'.$ D(f+g) = (f+g)' = f' + g' = D(f) + D(g),D(rf) = (rf)' = rf' = rD(f).

• Integration over a finite interval $\ell : C(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = \int_{a}^{b} f(x) \, dx$, where $a, b \in \mathbb{R}, \ a < b$.

 $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices.

• $\alpha : \mathcal{M}_{m,n}(\mathbb{R}) \to \mathcal{M}_{n,m}(\mathbb{R}), \ \alpha(A) = A^t$, transpose of A.

 $\alpha(A+B) = \alpha(A) + \alpha(B) \iff (A+B)^t = A^t + B^t.$ $\alpha(rA) = r \alpha(A) \iff (rA)^t = rA^t.$ Hence α is linear.

•
$$\beta : \mathcal{M}_{2,2}(\mathbb{R}) \to \mathbb{R}, \quad \beta(A) = \det A.$$

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
Then $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

We have det(A) = det(B) = 0 while det(A + B) = 1. Hence $\beta(A + B) \neq \beta(A) + \beta(B)$ so that β is not linear.

More properties of linear mappings

• If a linear mapping $L: V \to W$ is invertible then the inverse mapping $L^{-1}: W \to V$ is also linear.

Given vectors $\mathbf{w}_1, \mathbf{w}_2 \in W$, let $\mathbf{v}_1 = L^{-1}(\mathbf{w}_1)$, $\mathbf{v}_2 = L^{-1}(\mathbf{w}_2)$. Since *L* is linear, $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{w}_1 + \mathbf{w}_2$. That is, $L^{-1}(\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{v}_1 + \mathbf{v}_2 = L^{-1}(\mathbf{w}_1) + L^{-1}(\mathbf{w}_2)$. Given a vector $\mathbf{w} \in W$, let $\mathbf{v} = L^{-1}(\mathbf{w})$. Since *L* is linear, for any scalar *r* we have $L(r\mathbf{v}) = rL(\mathbf{v}) = r\mathbf{w}$. That is, $L^{-1}(r\mathbf{w}) = r\mathbf{v} = rL^{-1}(\mathbf{w})$.

• If $L: V \to W$ and $M: W \to X$ are linear mappings then the composition $M \circ L: V \to X$ is also linear.

$$(M \circ L)(\mathbf{v}_1 + \mathbf{v}_2) = M(L(\mathbf{v}_1 + \mathbf{v}_2)) = M(L(\mathbf{v}_1) + L(\mathbf{v}_2))$$

= $M(L(\mathbf{v}_1)) + M(L(\mathbf{v}_2)) = (M \circ L)(\mathbf{v}_1) + (M \circ L)(\mathbf{v}_2).$
 $(M \circ L)(r\mathbf{v}) = M(L(r\mathbf{v})) = M(r L(\mathbf{v})) = r M(L(\mathbf{v})).$

Vector space of linear transformations

Let W be a vector space over a field \mathbb{F} . For any nonempty set S let $\mathcal{F}(S, W)$ denote the set of all mappings $f : S \to W$. The set $\mathcal{F}(S, W)$ is naturally endowed with the structure of a vector space over \mathbb{F} (this was already done before in the case $W = \mathbb{R}$). Namely, for any functions $f, g \in \mathcal{F}(S, W)$ we define the sum f + g by $(f + g)(x) = f(x) + g(x), x \in S$. For any function $f \in \mathcal{F}(S, W)$ and scalar $r \in \mathbb{F}$ we define the scalar multiple rf by $(rf)(x) = r \cdot f(x), x \in S$.

For any vector space V over \mathbb{F} we denote by $\mathcal{L}(V, W)$ a subset of $\mathcal{F}(V, W)$ consisting of all linear transformations from V to W.

Theorem $\mathcal{L}(V, W)$ is a subspace of $\mathcal{F}(V, W)$.

Examples of linear differential operators

• an ordinary differential operator

$$L: C^{\infty}(\mathbb{R})
ightarrow C^{\infty}(\mathbb{R}), \quad L=g_0rac{d^2}{dx^2}+g_1rac{d}{dx}+g_2,$$

where g_0, g_1, g_2 are smooth functions on \mathbb{R} . That is, $L(f) = g_0 f'' + g_1 f' + g_2 f$.

• Laplace's operator $\Delta : C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

(a.k.a. the Laplacian; also denoted by ∇^2).

Range and null-space

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $\mathcal{R}(L)$ (or L(V)). The **null-space** (or **kernel**) of L, denoted $\mathcal{N}(L)$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) The range $\mathcal{R}(L)$ is a subspace of W. (ii) The null-space $\mathcal{N}(L)$ is a subspace of V.

dim $\mathcal{R}(L)$ is called the **rank** of the transformation *L*. dim $\mathcal{N}(L)$ is called the **nullity** of *L*.

Dimension Theorem

Theorem Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Then $\dim \mathcal{R}(L) + \dim \mathcal{N}(L) = \dim V$.

The null-space $\mathcal{N}(L)$ is a subspace of V. It is finite-dimensional since the vector space V is.

Take a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ for the subspace $\mathcal{N}(L)$, then extend it to a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ for the entire space V.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range of *L*.

Assuming the claim is proved, we obtain

 $\dim \mathcal{R}(L) = m$, $\dim \mathcal{N}(L) = k$, $\dim V = k + m$.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range of *L*.

Proof (spanning): Any vector $\mathbf{w} \in \mathcal{R}(L)$ is represented as $\mathbf{w} = L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_m \mathbf{u}_m$$

for some $\alpha_i, \beta_j \in \mathbb{F}$. It follows that

$$\mathbf{w} = L(\mathbf{v}) = \alpha_1 L(\mathbf{v}_1) + \dots + \alpha_k L(\mathbf{v}_k) + \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m)$$
$$= \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m).$$

Note that $L(\mathbf{v}_i) = \mathbf{0}$ since $\mathbf{v}_i \in \mathcal{N}(L)$. Thus $\mathcal{R}(L)$ is spanned by the vectors $L(\mathbf{u}_1), \ldots, L(\mathbf{u}_m)$. **Claim** Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range of *L*.

Proof (linear independence): Assume that
$$t_1L(\mathbf{u}_1) + t_2L(\mathbf{u}_2) + \cdots + t_mL(\mathbf{u}_m) = \mathbf{0}$$

for some $t_i \in \mathbb{F}$. Let $\mathbf{u} = t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_m \mathbf{u}_m$. Since

$$L(\mathbf{u}) = t_1 L(\mathbf{u}_1) + t_2 L(\mathbf{u}_2) + \cdots + t_m L(\mathbf{u}_m) = \mathbf{0}$$

the vector **u** belongs to the null-space of *L*. Therefore $\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k$ for some $s_j \in \mathbb{F}$. It follows that

$$t_1\mathbf{u}_1+t_2\mathbf{u}_2+\cdots+t_m\mathbf{u}_m-s_1\mathbf{v}_1-s_2\mathbf{v}_2-\cdots-s_k\mathbf{v}_k=\mathbf{u}-\mathbf{u}=\mathbf{0}.$$

Linear independence of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_m$ implies that $t_1 = \cdots = t_m = 0$ (as well as $s_1 = \cdots = s_k = 0$). Thus the vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ are linearly independent.