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Linear Algebra II

Lecture 7:
Linear transformations.

Range and null-space.



Linear mapping = linear transformation

Definition. Given vector spaces V1 and V2, a

mapping L : V1 → V2 is linear (or F-linear) if

L(x+ y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ F.

A linear mapping ℓ : V → F is called a linear
functional on V .

If V1 = V2 (or if both V1 and V2 are functional

spaces) then a linear mapping L : V1 → V2 is called
a linear operator.



Linear mapping = linear transformation

Definition. Given vector spaces V1 and V2, a
mapping L : V1 → V2 is linear (or F-linear) if

L(x+ y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ F.

Remark. A function f : R → R given by

f (x) = ax + b is a linear transformation of the
vector space R only if b = 0.



Basic properties of linear mappings

Let L : V1 → V2 be a linear mapping.

• L(r1v1 + · · ·+ rkvk) = r1L(v1) + · · ·+ rkL(vk)
for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ F.

L(r1v1 + r2v2) = L(r1v1) + L(r2v2) = r1L(v1) + r2L(v2),

L(r1v1 + r2v2 + r3v3) = L(r1v1 + r2v2) + L(r3v3) =
= r1L(v1) + r2L(v2) + r3L(v3), and so on.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

L(01) = L(001) = 0L(01) = 02.

• L(−v) = −L(v) for any v ∈ V1.

L(−v) = L((−1)v) = (−1)L(v) = −L(v).



Examples of linear mappings

• Scaling L : V → V , L(v) = sv, where s ∈ F.
L(x+ y) = s(x+ y) = sx+ sy = L(x) + L(y),
L(rx) = s(rx) = (sr)x = r(sx) = rL(x).

• Dot product with a fixed vector
ℓ : Rn → R, ℓ(v) = v · v0, where v0 ∈ R

n.
ℓ(x+ y) = (x+ y) · v0 = x · v0 + y · v0 = ℓ(x) + ℓ(y),
ℓ(rx) = (rx) · v0 = r(x · v0) = rℓ(x).

• Cross product with a fixed vector
L : R3 → R

3, L(v) = v × v0, where v0 ∈ R
3.

• Multiplication by a fixed matrix

L : Rn → R
m, L(v) = Av, where A is an m×n

matrix and all vectors are column vectors.



Linear mappings of functional vector spaces

• Evaluation at a fixed point

ℓ : F(S) → R, ℓ(f ) = f (a), where a ∈ S .

• Multiplication by a fixed function
L : F(R) → F(R), L(f ) = gf , where g ∈ F(R).

• Differentiation D : C 1(R) → C (R), L(f ) = f ′.
D(f + g) = (f + g)′ = f ′ + g ′ = D(f ) + D(g),
D(rf ) = (rf )′ = rf ′ = rD(f ).

• Integration over a finite interval

ℓ : C (R) → R, ℓ(f ) =

∫

b

a

f (x) dx , where

a, b ∈ R, a < b.



Mm,n(R): the space of m×n matrices.

• α : Mm,n(R) → Mn,m(R), α(A) = At ,
transpose of A.

α(A+ B) = α(A) + α(B) ⇐⇒ (A+ B)t = At + B t .
α(rA) = r α(A) ⇐⇒ (rA)t = rAt .
Hence α is linear.

• β : M2,2(R) → R, β(A) = detA.

Let A =

(

1 0
0 0

)

and B =

(

0 0
0 1

)

.

Then A+ B =

(

1 0
0 1

)

.

We have det(A) = det(B) = 0 while det(A+ B) = 1.
Hence β(A+ B) 6= β(A) + β(B) so that β is not linear.



More properties of linear mappings

• If a linear mapping L : V → W is invertible then

the inverse mapping L−1 : W → V is also linear.

Given vectors w1,w2 ∈ W , let v1 = L−1(w1), v2 = L−1(w2).
Since L is linear, L(v1 + v2) = L(v1) + L(v2) = w1 +w2.
That is, L−1(w1 +w2) = v1 + v2 = L−1(w1) + L−1(w2).
Given a vector w ∈ W , let v = L−1(w). Since L is linear, for
any scalar r we have L(rv) = rL(v) = rw. That is,
L−1(rw) = rv = rL−1(w).

• If L : V → W and M : W → X are linear
mappings then the composition M◦L : V → X is

also linear.

(M◦L)(v1 + v2) = M
(

L(v1 + v2)
)

= M
(

L(v1) + L(v2)
)

= M(L(v1)) +M(L(v2)) = (M◦L)(v1) + (M◦L)(v2).
(M◦L)(rv) = M(L(rv)) = M

(

r L(v)
)

= r M(L(v)).



Vector space of linear transformations

Let W be a vector space over a field F. For any nonempty set
S let F(S ,W ) denote the set of all mappings f : S → W .
The set F(S ,W ) is naturally endowed with the structure of a
vector space over F (this was already done before in the case
W = R). Namely, for any functions f , g ∈ F(S ,W ) we
define the sum f + g by (f + g)(x) = f (x) + g(x), x ∈ S .
For any function f ∈ F(S ,W ) and scalar r ∈ F we define
the scalar multiple rf by (rf )(x) = r ·f (x), x ∈ S .

For any vector space V over F we denote by L(V ,W ) a
subset of F(V ,W ) consisting of all linear transformations
from V to W .

Theorem L(V ,W ) is a subspace of F(V ,W ).



Examples of linear differential operators

• an ordinary differential operator

L : C∞(R) → C∞(R), L = g0
d2

dx2
+ g1

d

dx
+ g2,

where g0, g1, g2 are smooth functions on R.

That is, L(f ) = g0f
′′ + g1f

′ + g2f .

• Laplace’s operator ∆ : C∞(R2) → C∞(R2),

∆f =
∂2f

∂x2
+

∂2f

∂y 2

(a.k.a. the Laplacian; also denoted by ∇2).



Range and null-space

Let V ,W be vector spaces and L : V → W be a
linear mapping.

Definition. The range (or image) of L is the set

of all vectors w ∈ W such that w = L(v) for some
v ∈ V . The range of L is denoted R(L) (or L(V )).

The null-space (or kernel) of L, denoted N (L), is
the set of all vectors v ∈ V such that L(v) = 0.

Theorem (i) The range R(L) is a subspace of W .

(ii) The null-space N (L) is a subspace of V .

dimR(L) is called the rank of the transformation L.
dimN (L) is called the nullity of L.



Dimension Theorem

Theorem Let L : V → W be a linear mapping of
a finite-dimensional vector space V to a vector

space W . Then dimR(L) + dimN (L) = dimV .

The null-space N (L) is a subspace of V . It is
finite-dimensional since the vector space V is.

Take a basis v1, v2, . . . , vk for the subspace N (L), then
extend it to a basis v1, v2, . . . , vk , u1, u2, . . . , um for the entire
space V .

Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Assuming the claim is proved, we obtain

dimR(L) = m, dimN (L) = k, dimV = k +m.



Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Proof (spanning): Any vector w ∈ R(L) is represented as
w = L(v), where v ∈ V . Then

v = α1v1 + α2v2 + · · ·+ αkvk + β1u1 + β2u2 + · · ·+ βmum

for some αi , βj ∈ F. It follows that

w = L(v) = α1L(v1)+ · · ·+αkL(vk)+β1L(u1)+ · · ·+βmL(um)

= β1L(u1) + · · ·+ βmL(um).

Note that L(vi) = 0 since vi ∈ N (L).

Thus R(L) is spanned by the vectors L(u1), . . . , L(um).



Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Proof (linear independence): Assume that

t1L(u1) + t2L(u2) + · · ·+ tmL(um) = 0

for some ti ∈ F. Let u = t1u1 + t2u2 + · · ·+ tmum. Since

L(u) = t1L(u1) + t2L(u2) + · · ·+ tmL(um) = 0,

the vector u belongs to the null-space of L. Therefore
u = s1v1 + s2v2 + · · ·+ skvk for some sj ∈ F. It follows that

t1u1+ t2u2+ · · ·+ tmum− s1v1− s2v2−· · ·− skvk = u−u = 0.

Linear independence of vectors v1, . . . , vk , u1, . . . , um implies
that t1 = · · · = tm = 0 (as well as s1 = · · · = sk = 0).

Thus the vectors L(u1), L(u2), . . . , L(um) are linearly
independent.


