MATH 423
Linear Algebra Il
Lecture 7:

Linear transformations.
Range and null-space.



Linear mapping = linear transformation

Definition. Given vector spaces V; and V>, a
mapping L: V4 — V, is linear (or F-linear) if

L(x +y) = L(x) + L(y),
L(rx) = rL(x)
forany x,y € Vj and r € F.

A linear mapping ¢ : V — [ is called a linear
functional on V.

If Vi =V, (orif both Vi and V; are functional
spaces) then a linear mapping L: V4 — V, is called
a linear operator.



Linear mapping = linear transformation

Definition. Given vector spaces V; and V>, a
mapping L: V4 — V, is linear (or F-linear) if

L(x +y) = L(x) + L(y),
L(rx) = rL(x)
forany x,y € Vj and r € F.

Remark. A function f : R — R given by
f(x) = ax + b is a linear transformation of the
vector space R only if b =0.



Basic properties of linear mappings

Let L: Vi, — V, be a linear mapping.

o L(nvi+ -+ nvk)=nl(vi)+ -+ rnl(vg)
forall k>1, vy,...,vp € Vq, and n,...,rp €.
L(r1v1 + I’2V2) = L(r]_V]_) -+ L(r2v2) = I’]_L(V]_) + rzL(Vz),

L(rnvi + nvo + rv3) = L(nvy 4+ nv,) + L(rvs) =
= nL(v1) + rnL(v2) + r3L(v3), and so on.

e [(0;) =0, where 0; and 0, are zero vectors in
Vi and V,, respectively.

L(0,) = L(00;) = OL(0;) = 0.
o [(—v)=—L(v) forany v e V.
L(=v) = L((=1)v) = (=1)L(v) = —L(v).



Examples of linear mappings

e Scaling L:V — V, L(v) = sv, where s €F.
L(x +y) = s(x+y) = sx+ sy = L(x) + L(y),

L(rx) = s(rx) = (sr)x = r(sx) = rL(x).

e Dot product with a fixed vector

(:R" =R, ¢(v)=v-vg, where vo € R".
l(x+y)=(x+y) vo=x-vg+Yy-vo=~x)+{y),
U(rx) = (rx) - vo = r(x - vg) = rf(x).

e Cross product with a fixed vector

L:R3— R3 L(v) =v X vg, where vy € R3.

e Multiplication by a fixed matrix
L:R"— R™ L(v) = Av, where Ais an mxn
matrix and all vectors are column vectors.



Linear mappings of functional vector spaces

e FEvaluation at a fixed point

(:F(S)— R, (f)=f(a), where ac§S.

e Multiplication by a fixed function

L: F(R) — F(R), L(f)= gf, where g € F(R).

e Differentiation D : C}(R) — C(R), L(f)="f".

D(f +g)=(f +g) =f"+g = D(f)+ D(g),
D(rf) = (rf) = rf’ = rD(f).

e Integration over a finite interval

b
[ C(R) SR, ((f) = / £(x) dx, where
abcR, a<b. ’



M a(R): the space of mxn matrices.

® (. Mmyn(R) — Mn,m(R)r &(A) -
transpose of A.

a(A+ B) =a(A)+ «(B) < (A+ B)' = A"+ B".
a(rA) = ra(A) < (rA)t = rA.
Hence « is linear.

o 5: Myr(R) =R, S(A)=detA.

10 00
Let A—(O 0) and B—(O 1).

Then A+ B = (1 O).

We have det(A) = det
Hence B(A+ B) # /5(

) =0 while det(A+ B) = 1.

(B
A) + B(B) so that f3 is not linear.



More properties of linear mappings

e If a linear mapping L : V — W is invertible then
the inverse mapping L™!: W — V is also linear.
Given vectors wy,wy € W, let vy = L7} (wy), vp = L7} (wy).
Since L is linear, L(vy +vy) = L(v1) + L(v2) = wy + wy.
Thatis, L7 (wy +wp) = vy + vy = L7 (wy) + L7 (wy).
Given a vector w € W, let v = L"!(w). Since L is linear, for

any scalar r we have L(rv) =rL(v) = rw. Thatis,
L7(rw) = rv = rL7}(w).

o If L:V —-W and M: W — X are linear
mappings then the composition MolL : V — X s
also linear.

(MoL)(v1 +vp) = ( (vi+ v2)) = M(L(vl) + L(vz))

M(L(v1)) + M(L(v2)) = (MoL)(v1) + (MoL)(v>).
(MoL)(rv) = M(L(rv)) = M(r L(v)) = r M(L(v)).



Vector space of linear transformations

Let W be a vector space over a field IF. For any nonempty set
S let F(S, W) denote the set of all mappings f:S — W.
The set F(S, W) is naturally endowed with the structure of a
vector space over [ (this was already done before in the case
W =R). Namely, for any functions f,g € F(S, W) we
define the sum f + g by (f+ g)(x) = f(x)+ g(x), x € S.
For any function f € F(S, W) and scalar r € F' we define
the scalar multiple rf by (rf)(x) =r-f(x), x € S.

For any vector space V over [F we denote by £L(V, W) a
subset of F(V, W) consisting of all linear transformations
from V to W.

Theorem L(V, W) is a subspace of F(V, W).



Examples of linear differential operators

e an ordinary differential operator
2 d

@ + gl& + 82,

where gy, g1, & are smooth functions on R.

Thatis, L(f) = gof” + g1f’ + &f.

L:C®(R) = C*(R), L=g

e Laplace's operator A : C*(R?) — C*(RR?),
0*f  O*f

=53 + oy2

(a.k.a. the Laplacian; also denoted by V?).

Af



Range and null-space

Let V., W be vector spaces and L:V — W be a
linear mapping.

Definition. The range (or image) of L is the set
of all vectors w € W such that w = L(v) for some
v € V. The range of L is denoted R(L) (or L(V)).
The null-space (or kernel) of L, denoted N'(L), is
the set of all vectors v € V' such that L(v) = 0.

Theorem (i) The range R(L) is a subspace of W.
(ii) The null-space N'(L) is a subspace of V.

dim R(L) is called the rank of the transformation L.
dim A/(L) is called the nullity of L.



Dimension Theorem

Theorem Let L:V — W be a linear mapping of
a finite-dimensional vector space V to a vector
space W. Then |[dimR(L) +dimN(L) =dim V.

The null-space NV/(L) is a subspace of V. ltis
finite-dimensional since the vector space V is.

Take a basis vq,vy, ..., v, for the subspace NV(L), then
extend it to a basis vi,Vo, ..., Vi, Uy, Uy, ..., U, for the entire
space V.

Claim Vectors L(uy), L(uy),...,L(u,) form a basis for the
range of L.

Assuming the claim is proved, we obtain
dmR(L)=m, dimN(L)=k, dimV=k+m.



Claim Vectors L(u;), L(uy),...,L(u,) form a basis for the
range of L.

Proof (spanning): Any vector w € R(L) is represented as
w = L(v), where v € V. Then

V = Vi + QoVp + - - - + Vi + Brug + Boo + -+ - + By,
for some «;, B; € F. It follows that
w=L(v) =aiL(vi)+---Faxl(vi)+FiL(ur)+- - -+ Sml(unm)
= G1il(uy) + -+ -+ Bml(uny).

Note that L(v;) = 0 since v; € N(L).
Thus R(L) is spanned by the vectors L(uy),. .., L(uy).



Claim Vectors L(uy), L(uy),...,L(uy,) form a basis for the
range of L.

Proof (linear independence): Assume that
tlL(Ul) + tzL(UQ) + -4 tmL(Um) =0
for some t; € F. Let u= tju; + thup + - - - + t,u,. Since
L(u) = t1L(uy) + toL(u2) + - - - + tpL(uy,) =0,

the vector u belongs to the null-space of L. Therefore
U= 5Vi + Vo + - - - + sV, for some s; € F. It follows that

tiup+buy+- -+t —SIVi —SHVo— - - — S5V, = uU—Uu = 0
Linear independence of vectors vq,...,Vv, ug,...,u, implies
that t; =---=1t, =0 (aswell as sy =--- =5, =0).

Thus the vectors L(uy), L(u2), ..., L(us,) are linearly

independent.



