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Linear Algebra II

Lecture 8:
Subspaces and linear transformations.

Basis and coordinates.
Matrix of a linear transformation.



Linear transformation

Definition. Given vector spaces V1 and V2 over a
field F, a mapping L : V1 → V2 is linear if

L(x + y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ F.

Basic properties of linear mappings:

• L(r1v1 + · · · + rkvk) = r1L(v1) + · · · + rkL(vk)
for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ F.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

• L(−v) = −L(v) for any v ∈ V1.



Subspaces and linear maps

Let V1, V2 be vector spaces and L : V1 → V2 be a
linear map. Given a set U ⊂ V1, its image under
the map L, denoted L(U), is the set of all vectors in
V2 that can be represented as L(x) for some x ∈ U .

Theorem If U is a subspace of V1 then L(U) is a
subspace of V2.

Proof: U is nonempty =⇒ L(U) is nonempty.

Let u, v ∈ L(U). This means u = L(x) and v = L(y) for
some x, y ∈ U . By linearity, u + v = L(x) + L(y) = L(x + y).
Since U is a subspace of V1, we have x + y ∈ U so that
u + v ∈ L(U).

Similarly, if u = L(x) for some x ∈ U then for any r ∈ F we
have ru = rL(x) = L(rx) ∈ L(U).



Subspaces and linear maps

Let V1, V2 be vector spaces and L : V1 → V2 be a
linear map. Given a set W ⊂ V2, its preimage (or
inverse image) under the map L, denoted L−1(W ),
is the set of vectors x ∈ V1 such that L(x) ∈ W .

Theorem If W is a subspace of V2 then its
preimage L−1(W ) is a subspace of V1.

Proof: Let 01 be the zero vector in V1 and 02 be the zero
vector in V2. By linearity, L(01) = 02. Since W is a
subspace of V2, it contains 02. Hence 01 ∈ L−1(W ).

Let x, y ∈ L−1(W ). This means that L(x), L(y) ∈ W . Then
L(x + y) = L(x) + L(y) is in W since W is closed under
addition. Therefore x + y ∈ L−1(W ).

Similarly, if L(x) ∈ W for some x ∈ V1 then for any r ∈ F

we have L(rx) = rL(x) ∈ W so that rx ∈ L−1(W ).



Range and null-space

Let V , W be vector spaces and L : V → W be a
linear mapping.

Definition. The range (or image) of L is the set
of all vectors w ∈ W such that w = L(v) for some
v ∈ V . The range of L is denoted R(L).

The null-space (or kernel) of L, denoted N (L), is
the set of all vectors v ∈ V such that L(v) = 0.

Theorem (i) The range R(L) is a subspace of W .
(ii) The null-space N (L) is a subspace of V .

Proof: R(L) = L(V ), N (L) = L−1({0}).



Dimension Theorem

Theorem Let L : V → W be a linear mapping of
a finite-dimensional vector space V to a vector
space W . Then dimR(L) + dimN (L) = dim V .

The null-space N (L) is a subspace of V . It is
finite-dimensional since the vector space V is.

Take a basis v1, v2, . . . , vk for the subspace N (L), then
extend it to a basis v1, v2, . . . , vk ,u1,u2, . . . ,um for the entire
space V .

Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Assuming the claim is proved, we obtain

dimR(L) = m, dimN (L) = k , dim V = k + m.



Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Proof (spanning): Any vector w ∈ R(L) is represented as
w = L(v), where v ∈ V . Then

v = α1v1 + α2v2 + · · · + αkvk + β1u1 + β2u2 + · · · + βmum

for some αi , βj ∈ F. By linearity of L,

w = L(v) = α1L(v1)+ · · ·+αkL(vk)+β1L(u1)+ · · ·+βmL(um)

= β1L(u1) + · · · + βmL(um).

Note that L(vi) = 0 since vi ∈ N (L).

Thus R(L) is spanned by the vectors L(u1), . . . , L(um).



Claim Vectors L(u1), L(u2), . . . , L(um) form a basis for the
range of L.

Proof (linear independence): Assume that

t1L(u1) + t2L(u2) + · · · + tmL(um) = 0

for some ti ∈ F. Let u = t1u1 + t2u2 + · · · + tmum. Since

L(u) = t1L(u1) + t2L(u2) + · · · + tmL(um) = 0,

the vector u belongs to the null-space of L. Therefore
u = s1v1 + s2v2 + · · · + skvk for some sj ∈ F. It follows that

t1u1 + t2u2 + · · ·+ tmum− s1v1− s2v2−· · ·− skvk = u−u = 0.

Linear independence of vectors v1, . . . , vk ,u1, . . . ,um implies
that t1 = · · · = tm = 0 (as well as s1 = · · · = sk = 0).

Thus the vectors L(u1), L(u2), . . . , L(um) are linearly
independent.



Let V1, V2 be vector spaces and L : V1 → V2 be a linear map.

Definition. The map L is one-to-one if it maps different
vectors from V1 to different vectors in V2. That is, for any
x, y ∈ V1 we have that x 6= y implies L(x) 6= L(y).

The map L is onto if any element y ∈ V2 is represented as
L(x) for some x ∈ V1. If the map L is both one-to-one and
onto, then the inverse map L−1 : V2 → V1 is well defined.

Theorem A linear map L is one-to-one if and only if the
nullspace N (L) is trivial.

Proof: Let 01 be the zero vector in V1 and 02 be the zero
vector in V2. If a vector x 6= 01 belongs to N (L), then
L(x) = 02 = L(01) so that L is not one-to-one.

Conversely, assume that N (L) is trivial. By linearity,
L(x − y) = L(x) − L(y) for all x, y ∈ V1. Therefore
L(x) = L(y) =⇒ x − y ∈ N (L) =⇒ x = y. Thus L is
one-to-one.



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,
then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · · + xnvn,

where xi ∈ F. The coefficients x1, x2, . . . , xn are
called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The coordinate mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

establishes a one-to-one correspondence between V
and F

n. This correspondence is linear.



Let v1, v2, . . . , vn be elements of a vector space V . Define a
map f : F

n → V by

f (x1, x2, . . . , xn) = x1v1 + x2v2 + · · · + xnvn.

Theorem (i) The map f linear.
(ii) If vectors v1, v2, . . . , vn are linearly independent then f is
one-to-one.
(iii) If vectors v1, v2, . . . , vn span V then f is onto.
(iv) If vectors v1, v2, . . . , vn form a basis for V then f is
one-to-one and onto.

Proof: The map f is linear since

(x1+y1)v1 + (x2+y2)v2 + · · · + (xn+yn)vn

= (x1v1+x2v2+ · · ·+xnvn) + (y1v1+y2v2+ · · ·+ynvn),

(rx1)v1+(rx2)v2+ · · ·+(rxn)vn = r(x1v1+x2v2+ · · ·+xnvn)

for all xi , yi , r ∈ F. Further, linear independence of v1, . . . , vn

means that the null-space of f is trivial, which is equivalent to
f being one-to-one. Finally, statement (iii) is obvious while
statement (iv) follows from (ii) and (iii).



Examples. • Coordinates of a vector
v = (x1, x2, . . . , xn) ∈ F

n relative to the standard
basis e1 = (1, 0, . . . , 0, 0), e2 = (0, 1, . . . , 0, 0),. . . ,
en = (0, 0, . . . , 0, 1) are (x1, x2, . . . , xn).

• Coordinates of a matrix
(

a b
c d

)

∈ M2,2(F)

relative to the basis
(

1 0
0 0

)

,

(

0 0
1 0

)

,

(

0 1
0 0

)

,
(

0 0
0 1

)

are (a, c , b, d).

• Coordinates of a polynomial
p(x) = a0 + a1x + · · · + anx

n ∈ Pn relative to the
basis 1, x , x2, . . . , xn are (a0, a1, . . . , an).



Matrix of a linear transformation

Let V , W be vector spaces and L : V → W be a
linear map. Let α = [v1, v2, . . . , vn] be an ordered
basis for V and β = [w1,w2, . . . ,wm] be an
ordered basis for W .

Definition. The matrix of L relative to the bases α

and β is an m×n matrix whose consecutive columns
are coordinates of vectors L(v1), L(v2), . . . , L(vn)
relative to the basis β.

Notation. [w]β denotes coordinates of w relative to the
ordered basis β, regarded as a column vector. [L]βα denotes
the matrix of L relative to α and β. Then

[L]βα =
(

[L(v1)]β, [L(v2)]β, . . . , [L(vn)]β
)

.



Examples. • D : P2 → P1, (Dp)(x) = p′(x).

Let α = [1, x , x2], β = [1, x ]. Columns of the
matrix [D]βα are coordinates of polynomials D1, Dx ,
Dx2 w.r.t. the basis 1, x .

D1 = 0, Dx = 1, Dx2 = 2x =⇒ [D]βα =

(

0 1 0
0 0 2

)

• L : P2 → P2, (Lp)(x) = p(x + 1).

Let us find the matrix [L]αα:
L1 = 1, Lx = 1 + x , Lx2 = (x + 1)2 = 1 + 2x + x2.

=⇒ [L]αα =





1 1 1
0 1 2
0 0 1






