MATH 423
 Linear Algebra II

Lecture 8:
Subspaces and linear transformations. Basis and coordinates. Matrix of a linear transformation.

Linear transformation

Definition. Given vector spaces V_{1} and V_{2} over a field \mathbb{F}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{F}$.
Basic properties of linear mappings:

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{F}$.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.

Subspaces and linear maps

Let V_{1}, V_{2} be vector spaces and $L: V_{1} \rightarrow V_{2}$ be a linear map. Given a set $U \subset V_{1}$, its image under the map L, denoted $L(U)$, is the set of all vectors in V_{2} that can be represented as $L(\mathbf{x})$ for some $\mathbf{x} \in U$.

Theorem If U is a subspace of V_{1} then $L(U)$ is a subspace of V_{2}.
Proof: U is nonempty $\Longrightarrow L(U)$ is nonempty.
Let $\mathbf{u}, \mathbf{v} \in L(U)$. This means $\mathbf{u}=L(\mathbf{x})$ and $\mathbf{v}=L(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in U$. By linearity, $\mathbf{u}+\mathbf{v}=L(\mathbf{x})+L(\mathbf{y})=L(\mathbf{x}+\mathbf{y})$. Since U is a subspace of V_{1}, we have $\mathbf{x}+\mathbf{y} \in U$ so that $\mathbf{u}+\mathbf{v} \in L(U)$.
Similarly, if $\mathbf{u}=L(\mathbf{x})$ for some $\mathbf{x} \in U$ then for any $r \in \mathbb{F}$ we have $r \mathbf{u}=r L(\mathbf{x})=L(r \mathbf{x}) \in L(U)$.

Subspaces and linear maps

Let V_{1}, V_{2} be vector spaces and $L: V_{1} \rightarrow V_{2}$ be a linear map. Given a set $W \subset V_{2}$, its preimage (or inverse image) under the map L, denoted $L^{-1}(W)$, is the set of vectors $\mathbf{x} \in V_{1}$ such that $L(\mathbf{x}) \in W$.
Theorem If W is a subspace of V_{2} then its preimage $L^{-1}(W)$ is a subspace of V_{1}.
Proof: Let $\mathbf{0}_{1}$ be the zero vector in V_{1} and $\mathbf{0}_{2}$ be the zero vector in V_{2}. By linearity, $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$. Since W is a subspace of V_{2}, it contains $\mathbf{0}_{2}$. Hence $\mathbf{0}_{1} \in L^{-1}(W)$.
Let $\mathbf{x}, \mathbf{y} \in L^{-1}(W)$. This means that $L(\mathbf{x}), L(\mathbf{y}) \in W$. Then $L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})$ is in W since W is closed under addition. Therefore $\mathbf{x}+\mathbf{y} \in L^{-1}(W)$.
Similarly, if $L(\mathbf{x}) \in W$ for some $\mathbf{x} \in V_{1}$ then for any $r \in \mathbb{F}$ we have $L(r \mathbf{x})=r L(\mathbf{x}) \in W$ so that $r \mathbf{x} \in L^{-1}(W)$.

Range and null-space

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $\mathcal{R}(L)$.
The null-space (or kernel) of L, denoted $\mathcal{N}(L)$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range $\mathcal{R}(L)$ is a subspace of W. (ii) The null-space $\mathcal{N}(L)$ is a subspace of V. Proof: $\mathcal{R}(L)=L(V), \mathcal{N}(L)=L^{-1}(\{\mathbf{0}\})$.

Dimension Theorem

Theorem Let $L: V \rightarrow W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Then $\operatorname{dim} \mathcal{R}(L)+\operatorname{dim} \mathcal{N}(L)=\operatorname{dim} V$.

The null-space $\mathcal{N}(L)$ is a subspace of V. It is finite-dimensional since the vector space V is.
Take a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ for the subspace $\mathcal{N}(L)$, then extend it to a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ for the entire space V.
Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Assuming the claim is proved, we obtain $\operatorname{dim} \mathcal{R}(L)=m, \quad \operatorname{dim} \mathcal{N}(L)=k, \quad \operatorname{dim} V=k+m$.

Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Proof (spanning): Any vector $\mathbf{w} \in \mathcal{R}(L)$ is represented as $\mathbf{w}=L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}+\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\cdots+\beta_{m} \mathbf{u}_{m}
$$

for some $\alpha_{i}, \beta_{j} \in \mathbb{F}$. By linearity of L,

$$
\begin{gathered}
\mathbf{w}=L(\mathbf{v})=\alpha_{1} L\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{k} L\left(\mathbf{v}_{k}\right)+\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right) \\
=\beta_{1} L\left(\mathbf{u}_{1}\right)+\cdots+\beta_{m} L\left(\mathbf{u}_{m}\right) .
\end{gathered}
$$

Note that $L\left(\mathbf{v}_{i}\right)=\mathbf{0}$ since $\mathbf{v}_{i} \in \mathcal{N}(L)$.
Thus $\mathcal{R}(L)$ is spanned by the vectors $L\left(\mathbf{u}_{1}\right), \ldots, L\left(\mathbf{u}_{m}\right)$.

Claim Vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ form a basis for the range of L.

Proof (linear independence): Assume that

$$
t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0}
$$

for some $t_{i} \in \mathbb{F}$. Let $\mathbf{u}=t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}$. Since

$$
L(\mathbf{u})=t_{1} L\left(\mathbf{u}_{1}\right)+t_{2} L\left(\mathbf{u}_{2}\right)+\cdots+t_{m} L\left(\mathbf{u}_{m}\right)=\mathbf{0},
$$

the vector \mathbf{u} belongs to the null-space of L. Therefore $\mathbf{u}=s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{k} \mathbf{v}_{k}$ for some $s_{j} \in \mathbb{F}$. It follows that $t_{1} \mathbf{u}_{1}+t_{2} \mathbf{u}_{2}+\cdots+t_{m} \mathbf{u}_{m}-s_{1} \mathbf{v}_{1}-s_{2} \mathbf{v}_{2}-\cdots-s_{k} \mathbf{v}_{k}=\mathbf{u}-\mathbf{u}=\mathbf{0}$.

Linear independence of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ implies that $t_{1}=\cdots=t_{m}=0$ (as well as $s_{1}=\cdots=s_{k}=0$). Thus the vectors $L\left(\mathbf{u}_{1}\right), L\left(\mathbf{u}_{2}\right), \ldots, L\left(\mathbf{u}_{m}\right)$ are linearly independent.

Let V_{1}, V_{2} be vector spaces and $L: V_{1} \rightarrow V_{2}$ be a linear map.
Definition. The map L is one-to-one if it maps different vectors from V_{1} to different vectors in V_{2}. That is, for any $\mathbf{x}, \mathbf{y} \in V_{1}$ we have that $\mathbf{x} \neq \mathbf{y}$ implies $L(\mathbf{x}) \neq L(\mathbf{y})$.
The map L is onto if any element $\mathbf{y} \in V_{2}$ is represented as $L(\mathbf{x})$ for some $\mathbf{x} \in V_{1}$. If the map L is both one-to-one and onto, then the inverse map $L^{-1}: V_{2} \rightarrow V_{1}$ is well defined.

Theorem A linear map L is one-to-one if and only if the nullspace $\mathcal{N}(L)$ is trivial.
Proof: Let $\mathbf{0}_{1}$ be the zero vector in V_{1} and $\mathbf{0}_{2}$ be the zero vector in V_{2}. If a vector $\mathbf{x} \neq \mathbf{0}_{1}$ belongs to $\mathcal{N}(L)$, then $L(\mathbf{x})=\mathbf{0}_{2}=L\left(\mathbf{0}_{1}\right)$ so that L is not one-to-one.
Conversely, assume that $\mathcal{N}(L)$ is trivial. By linearity, $L(\mathbf{x}-\mathbf{y})=L(\mathbf{x})-L(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in V_{1}$. Therefore $L(\mathbf{x})=L(\mathbf{y}) \Longrightarrow \mathbf{x}-\mathbf{y} \in \mathcal{N}(L) \Longrightarrow \mathbf{x}=\mathbf{y}$. Thus L is one-to-one.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{F}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The coordinate mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

establishes a one-to-one correspondence between V and \mathbb{F}^{n}. This correspondence is linear.

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be elements of a vector space V. Define a $\operatorname{map} f: \mathbb{F}^{n} \rightarrow V$ by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

Theorem (i) The map f linear.
(ii) If vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent then f is one-to-one.
(iii) If vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ span V then f is onto.
(iv) If vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ form a basis for V then f is one-to-one and onto.

Proof: The map f is linear since

$$
\begin{gathered}
\left(x_{1}+y_{1}\right) \mathbf{v}_{1}+\left(x_{2}+y_{2}\right) \mathbf{v}_{2}+\cdots+\left(x_{n}+y_{n}\right) \mathbf{v}_{n} \\
=\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}\right)+\left(y_{1} \mathbf{v}_{1}+y_{2} \mathbf{v}_{2}+\cdots+y_{n} \mathbf{v}_{n}\right) \\
\left(r x_{1}\right) \mathbf{v}_{1}+\left(r x_{2}\right) \mathbf{v}_{2}+\cdots+\left(r x_{n}\right) \mathbf{v}_{n}=r\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}\right)
\end{gathered}
$$

for all $x_{i}, y_{i}, r \in \mathbb{F}$. Further, linear independence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ means that the null-space of f is trivial, which is equivalent to f being one-to-one. Finally, statement (iii) is obvious while statement (iv) follows from (ii) and (iii).

Examples. - Coordinates of a vector $\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ relative to the standard basis $\mathbf{e}_{1}=(1,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0, \ldots, 0,1)$ are $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Coordinates of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{F})$ relative to the basis $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are (a, c, b, d).
- Coordinates of a polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathcal{P}_{n}$ relative to the basis $1, x, x^{2}, \ldots, x^{n}$ are $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.

Matrix of a linear transformation

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear map. Let $\alpha=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ be an ordered basis for V and $\beta=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right]$ be an ordered basis for W.

Definition. The matrix of L relative to the bases α and β is an $m \times n$ matrix whose consecutive columns are coordinates of vectors $L\left(\mathbf{v}_{1}\right), L\left(\mathbf{v}_{2}\right), \ldots, L\left(\mathbf{v}_{n}\right)$ relative to the basis β.

Notation. $[\mathbf{w}]_{\beta}$ denotes coordinates of \mathbf{w} relative to the ordered basis β, regarded as a column vector. $[L]_{\alpha}^{\beta}$ denotes the matrix of L relative to α and β. Then

$$
[L]_{\alpha}^{\beta}=\left(\left[L\left(\mathbf{v}_{1}\right)\right]_{\beta},\left[L\left(\mathbf{v}_{2}\right)\right]_{\beta}, \ldots,\left[L\left(\mathbf{v}_{n}\right)\right]_{\beta}\right) .
$$

Examples. - $D: \mathcal{P}_{2} \rightarrow \mathcal{P}_{1}, \quad(D p)(x)=p^{\prime}(x)$.
Let $\alpha=\left[1, x, x^{2}\right], \beta=[1, x]$. Columns of the matrix $[D]_{\alpha}^{\beta}$ are coordinates of polynomials $D 1, D x$, $D x^{2}$ w.r.t. the basis $1, x$.
$D 1=0, \quad D x=1, \quad D x^{2}=2 x \Longrightarrow[D]_{\alpha}^{\beta}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$

- $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}, \quad(L p)(x)=p(x+1)$.

Let us find the matrix $[L]_{\alpha}^{\alpha}$.
$L 1=1, L x=1+x, L x^{2}=(x+1)^{2}=1+2 x+x^{2}$.
$\Longrightarrow \quad[L]_{\alpha}^{\alpha}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

