MATH 423
Linear Algebra Il

Lecture 8:
Subspaces and linear transformations.
Basis and coordinates.
Matrix of a linear transformation.



Linear transformation

Definition. Given vector spaces V; and V, over a
field ¥, a mapping L: V; — V, is linear if

L(x +y) = L(x) + L(y),
L(rx) = rL(x)
forany x,y € V; and r € F.

Basic properties of linear mappings:
o L(nvi+ -+ nvy)=nl(vy)+ -+ rnl(vg)
forall k>1, vq,...,vp € Vq, and nr,....r, € F.

e [(0;) =0, where 0; and 0, are zero vectors in
Vi and V,, respectively.

o [(—v)=—L(v) forany veE V.



Subspaces and linear maps

Let Vi, V), be vector spaces and L: V; — V, be a
linear map. Given a set U C V4, its image under
the map L, denoted L(U), is the set of all vectors in
V5 that can be represented as L(x) for some x € U.

Theorem If U is a subspace of V4 then L(U) is a
subspace of V.

Proof: U is nonempty = L(U) is nonempty.

Let u,v € L(U). This means u = L(x) and v = L(y) for
some x,y € U. By linearity, u+v = L(x) + L(y) = L(x+y).
Since U is a subspace of Vi, we have x +y € U so that
u+ve lL(V).

Similarly, if u = L(x) for some x € U then for any r € F we
have ru = rL(x) = L(rx) € L(UV).



Subspaces and linear maps

Let Vi, V), be vector spaces and L: V; — V, be a
linear map. Given a set W C V,, its preimage (or
inverse image) under the map L, denoted L~1( W),
is the set of vectors x € V4 such that L(x) € W.

Theorem If W is a subspace of V, then its
preimage L~(W) is a subspace of V;.

Proof: Let 0; be the zero vector in V; and 0, be the zero
vector in V5. By linearity, L(01) = 0,. Since W is a
subspace of V5, it contains 0,. Hence 0, € L7Y(W).

Let x,y € L=Y(W). This means that L(x),L(y) € W. Then
L(x +y) = L(x)+ L(y) isin W since W is closed under
addition. Therefore x +y € L™(W).

Similarly, if L(x) € W for some x € Vi then for any r € F
we have L(rx) =rL(x) € W so that rx € L7}(W).



Range and null-space

Let V, W be vector spacesand L:V — W be a
linear mapping.

Definition. The range (or image) of L is the set
of all vectors w € W such that w = L(v) for some
v € V. The range of L is denoted R(L).

The null-space (or kernel) of L, denoted N(L), is
the set of all vectors v € V such that L(v) = 0.
Theorem (i) The range R(L) is a subspace of W.
(ii) The null-space N (L) is a subspace of V.

Proof: R(L) = L(V), N(L)=L1({0}).



Dimension Theorem

Theorem Let L:V — W be a linear mapping of
a finite-dimensional vector space V to a vector
space W. Then |[dimR(L) +dimN (L) =dim V.

The null-space N(L) is a subspace of V. It is
finite-dimensional since the vector space V is.

Take a basis vi,vy, ..., v, for the subspace N(L), then
extend it to a basis vi,Vs, ..., Vi, Uy, Uy, ..., U, for the entire
space V.

Claim Vectors L(uy),L(uz),...,L(uy,) form a basis for the
range of L.

Assuming the claim is proved, we obtain
dmR(L)=m, dimN(L)=k, dimV =k+m.



Claim Vectors L(uy),L(uz),...,L(uy,) form a basis for the
range of L.

Proof (spanning): Any vector w € R(L) is represented as
w = L(v), where v€ V. Then

V= qQ1Vi + oV + + -+ + auVy + Biug + Boly + -+ - + Bpupy,
for some «;, B; € F. By linearity of L,
w = L(v) = aiL(vi)+---+axl(vi)+GiL(ur)+- - -+ Bml(unm)
= G1l(uy) + -+ + Bml(uny).

Note that L(v;) =0 since v; € N(L).
Thus R(L) is spanned by the vectors L(uy),. .., L(uy).



Claim Vectors L(uy), L(uy),...,L(u,) form a basis for the
range of L.

Proof (linear independence): Assume that
tiL(uy) + toL(u) + -+ + tl(uy) =0
for some t; € F. Let u= tju; + thuy + - - - + t,u,. Since

L(U) = tlL(ul) + t2L(u2) + -4 tmL(Um) = 0,

the vector u belongs to the null-space of L. Therefore
U= 5V;+ SHVp + - - + sV, for some s; € F. It follows that

tiup+buy+-- -+ tpUy — SV —SHVo— - - — S5 Ve = uU—U = 0
Linear independence of vectors vy, ...,V ug,..., u, implies
that t; =---=1t, =0 (aswell as s; =--- =5, =0).

Thus the vectors L(uy), L(uz), ..., L(us,) are linearly

independent.



Let Vi, V, be vector spaces and L: V; — V, be a linear map.

Definition. The map L is one-to-one if it maps different
vectors from V; to different vectors in V5. That is, for any
x,y € Vi we have that x #y implies L(x) # L(y).

The map L is onto if any element y € V, is represented as
L(x) for some x € V4. If the map L is both one-to-one and
onto, then the inverse map L™ : V, — V4 is well defined.

Theorem A linear map L is one-to-one if and only if the
nullspace N (L) is trivial.

Proof: Let 0; be the zero vector in V4 and 0, be the zero
vector in V,. If a vector x # 07 belongs to NV/(L), then
L(x) = 0, = L(0;) so that L is not one-to-one.

Conversely, assume that A/(L) is trivial. By linearity,

L(x —y) = L(x) — L(y) for all x,y € V4. Therefore
L(x)=L(y) = x—yeN(L) = x=y. Thuslis
one-to-one.



Basis and coordinates

If {vi,vo,...,v,} is a basis for a vector space V,
then any vector v € V' has a unique representation

V = X1V] + XoV2 + - - - + XpV,

where x; € F. The coefficients x1, X0, ..., X, are
called the coordinates of v with respect to the
ordered basis vi, vy, ..., V,.

The coordinate mapping

vector v + its coordinates (xi,Xp, ..., Xp)

establishes a one-to-one correspondence between V
and . This correspondence is linear.



Let vq,vo,...,v, be elements of a vector space V. Define a
map f:F" — V by

f(Xl,XQ, e 7Xn) = X1V1 + XoVo + - - - + X,V,,.
Theorem (i) The map f linear.
(ii) If vectors vy, Vs, ..., v, are linearly independent then f is
one-to-one.
(iii) If vectors vy,vy, ... v, span V then f is onto.
(iv) If vectors vy, vy, ..., v, form a basis for V then f is

one-to-one and onto.

Proof: The map f is linear since
(xity1)vi + (xty2)va + - + (X tya)Vn
= (xavitxeVat - +xVp) + (Vivityavat - - +YaVi),
(rx )vi+(rpo)Vot - - - +(rxa )V, = r(xavi+xove+ - - - +x,v,)
for all x;,y;,r € F. Further, linear independence of vq,...,v,
means that the null-space of f is trivial, which is equivalent to

f being one-to-one. Finally, statement (iii) is obvious while
statement (iv) follows from (ii) and (iii).



Examples. e Coordinates of a vector

v =(x1,X,...,X,) € F" relative to the standard
basis e; = (1,0,...,0,0), e, =(0,1,...,0,0),...,
e, =(0,0,...,0,1) are (x1,x0,...,Xp)

e Coordinates of a matrix (i 3)6 Mo o(F)

. . 10 00 01
relative to the basis (0 0), <1 0), <O O)’

0 0
(0 1) are (a,c,b,d).

e Coordinates of a polynomial
p(x) = ap + aix + - - - + a,x" € P, relative to the
basis 1,x,x2,...,x" are (agp,ai,...,an)



Matrix of a linear transformation

Let V. W be vector spacesand L:V — W bea
linear map. Let o = [vy,vy,...,v,] be an ordered
basis for V and 3 = [wy,wy, ..., wp] be an
ordered basis for W.

Definition. The matrix of L relative to the bases «
and (3 is an mxn matrix whose consecutive columns
are coordinates of vectors L(vy), L(vz),..., L(v,)
relative to the basis (.

Notation. [w]s denotes coordinates of w relative to the

ordered basis 3, regarded as a column vector. [L]® denotes
the matrix of L relative to & and 3. Then

[L12 = ([L(v1)ls. [L(v2)ls: - - - [L(vn)]5)-



Examples. o D : P, — P1, (Dp)(x) = p'(x).

Let o =[1,x,x%], 8 =[1,x]. Columns of the
matrix [D]Y are coordinates of polynomials D1, Dx,
Dx? w.r.t. the basis 1, x.

010

D1=0, Dx=1, Dx*=2x = [D]g:<0 0 2>
o L:P,— Py (Lp)(x)=p(x+1).
Let us find the matrix [L]%:
[1=1,Lx=1+x, Lx>=(x+1)>=1+2x+ x°.

111
— [e=(01 2

001



