
MATH 423

Linear Algebra II

Lecture 9:
Matrix of a linear transformation (continued).

Matrix multiplication.



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,

then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · ·+ xnvn,

where xi ∈ F. The coefficients x1, x2, . . . , xn are

called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The coordinate mapping v 7→ (x1, x2, . . . , xn)
establishes a one-to-one correspondence between V

and F
n. This correspondence is linear.

Notation. [v]β denotes coordinates of v relative to an ordered
basis β, regarded as a column vector.



Matrix of a linear transformation

Let V ,W be vector spaces and L : V → W be a

linear map. Let α = [v1, v2, . . . , vn] be an ordered
basis for V and β = [w1,w2, . . . ,wm] be an

ordered basis for W .

Definition. The matrix of L relative to the bases α
and β is an m×n matrix whose consecutive columns

are coordinates of vectors L(v1), L(v2), . . . , L(vn)
relative to the basis β.

Notation. [L]βα denotes the matrix of L relative to the bases α
and β. That is,

[L]βα =
(

[L(v1)]β, [L(v2)]β, . . . , [L(vn)]β
)

.

If V = W then [L]αα is also denoted [L]α.



Let V and W be vector spaces and S be a subset of V .

Theorem 1 (i) If S spans V , then any linear transformation
L : V → W is uniquely determined by its restriction to S .
(ii) If S is linearly independent then any function L : S → W

can be extended to a linear transformation from V to W .
(iii) If S is a basis for V then any function L : S → W can
be uniquely extended to a linear transformation from V to W .

Idea of the proof: If v = r1v1 + r2v2 + · · ·+ rnvn, where
vi ∈ S , ri ∈ F, then L(v) = r1L(v1) + r2L(v2) + · · ·+ rnL(vn)
for any linear map L : V → W .

Theorem 2 Suppose α = [v1, . . . , vn] is an ordered basis for
V and β = [w1, . . . ,wm] is an ordered basis for W . Then a
mapping M : L(V ,W ) → Mm,n(F) given by M(L) = [L]βα is
linear and invertible (i.e., one-to-one and onto).



Scalar product

Definition. The dot product of n-dimensional
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

in R
n is a scalar

x · y = x1y1 + x2y2 + · · ·+ xnyn =

n
∑

k=1

xkyk .

The dot product is also called the scalar product.



Matrix multiplication

The product of matrices A and B with entries in a field F is
defined if the number of columns in A matches the number of
rows in B .

Definition. Let A = (aik) be an m×n matrix and
B = (bkj) be an n×p matrix. The product AB is

defined to be the m×p matrix C = (cij) such that

cij =
∑n

k=1
aikbkj for all indices i , j .

That is, matrices are multiplied row by column:
(

∗ ∗ ∗
* * *

)





∗ ∗ * ∗
∗ ∗ * ∗
∗ ∗ * ∗



 =

(

∗ ∗ ∗ ∗
∗ ∗ * ∗

)



A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn











=











v1
v2
...
vm











B =











b11 b12 . . . b1p
b21 b22 . . . b2p
...

... . . . ...

bn1 bn2 . . . bnp











= (w1,w2, . . . ,wp)

=⇒ AB =











v1·w1 v1·w2 . . . v1·wp

v2·w1 v2·w2 . . . v2·wp
...

... . . . ...
vm·w1 vm·w2 . . . vm·wp













Examples.

(x1, x2, . . . , xn)









y1
y2
...
yn









= (
∑n

k=1
xkyk),









y1
y2
...
yn









(x1, x2, . . . , xn) =









y1x1 y1x2 . . . y1xn
y2x1 y2x2 . . . y2xn
...

... . . . ...
ynx1 ynx2 . . . ynxn









.



Linear maps and matrix multiplication

Theorem 1 Suppose α = [v1, . . . , vn] is an

ordered basis for V and β = [w1, . . . ,wm] is an
ordered basis for W . Then for any linear

transformation L : V → W and any vector v ∈ V ,

[L(v)]β = [L]βα[v]α.

Theorem 2 Suppose γ = [x1, . . . , xk ] is an
ordered basis for X . Then for any linear

transformations L : V → W and T : W → X ,

[T◦L]γα = [T ]γβ[L]
β
α.



Problem. Consider a linear operator L on the
vector space of 2×2 matrices given by

L

(

x y

z w

)

=

(

1 2

3 4

)(

x y

z w

)

.

Find the matrix of L with respect to the basis

E1 =

(

1 0

0 0

)

, E2 =

(

0 1

0 0

)

, E3 =

(

0 0

1 0

)

, E4 =

(

0 0

0 1

)

.

Let γ denote the ordered basis E1,E2,E3,E4.

It follows from the definition that [L]γ is a 4×4 matrix whose
columns are coordinates of the matrices

L(E1), L(E2), L(E3), L(E4)

with respect to the basis E1,E2,E3,E4.



L(E1) =

(

1 2
3 4

)(

1 0
0 0

)

=

(

1 0
3 0

)

= 1E1+0E2+3E3+0E4,

L(E2) =

(

1 2
3 4

)(

0 1
0 0

)

=

(

0 1
0 3

)

= 0E1+1E2+0E3+3E4,

L(E3) =

(

1 2
3 4

)(

0 0
1 0

)

=

(

2 0
4 0

)

= 2E1+0E2+4E3+0E4,

L(E4) =

(

1 2
3 4

)(

0 0
0 1

)

=

(

0 2
0 4

)

= 0E1+2E2+0E3+4E4.

Therefore

[L]γ =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









.



Thus the relation
(

x1 y1
z1 w1

)

=

(

1 2

3 4

)(

x y

z w

)

is equivalent to the relation








x1
y1
z1
w1









=









1 0 2 0
0 1 0 2
3 0 4 0

0 3 0 4

















x

y

z

w









.



Consider a linear operator L : P2 → P2 given by
(Lp)(x) = p(x + 1). In the previous lecture, it was found that

the matrix of L relative to the basis 1, x , x2 was





1 1 1
0 1 2
0 0 1



.

This means that the polynomial identity

b1 + b2x + b3x
2 = a1 + a2(x + 1) + a3(x + 1)2

is equivalent to the relation




b1
b2
b3



 =





1 1 1
0 1 2

0 0 1









a1
a2
a3



.



Matrix transformations

Any m×n matrix A ∈ Mm,n(F) gives rise to a
transformation LA : Fn → F

m given by LA(x) = Ax,

where x ∈ F
n and L(x) ∈ F

m are regarded as
column vectors. This transformation is linear.

Example. L





x

y

z



 =





1 0 2

3 4 7
0 5 8









x

y

z



.

Let e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, e3 = (0, 0, 1)t be the
standard basis for F3. We have that L(e1) = (1, 3, 0)t,
L(e2) = (0, 4, 5)t, L(e3) = (2, 7, 8)t. Thus
L(e1), L(e2), L(e3) are columns of the matrix.



Problem. Find a linear mapping L : F3 → F
2

such that L(e1) = (1, 1), L(e2) = (0,−2),

L(e3) = (3, 0), where e1, e2, e3 is the standard
basis for F3.

If such a map exists, then

L(x , y , z) = L(xe1 + ye2 + ze3)

= xL(e1) + yL(e2) + zL(e3)

= x(1, 1) + y (0,−2) + z(3, 0) = (x + 3z , x − 2y ).

On the other hand, a transformation given by the above
formula is indeed linear as

L(x , y , z) =

(

x + 3z
x − 2y

)

=

(

1 0 3
1 −2 0

)

(

x
y
z

)

.

Notice that columns of the matrix are vectors
L(e1), L(e2), L(e3).



Theorem 1 Suppose L : Fn → F
m is a linear map. Then

there exists an m×n matrix A such that L(x) = Ax for all
x ∈ F

n. Columns of A are vectors L(e1), L(e2), . . . , L(en),
where e1, e2, . . . , en is the standard basis for Fn.

y = Ax ⇐⇒









y1
y2
...
ym









=









a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

















x1
x2
...
xn









⇐⇒









y1
y2
...
ym









= x1









a11
a21
...

am1









+ x2









a12
a22
...

am2









+ · · ·+ xn









a1n
a2n
...

amn









Theorem 2 Given A ∈ Mm,n(F), the matrix of the
transformation LA relative to the standard bases in F

n and F
m

is exactly A.


