MATH 423
 Linear Algebra II

Lecture 9:

Matrix of a linear transformation (continued). Matrix multiplication.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{F}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The coordinate mapping $\mathbf{v} \mapsto\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ establishes a one-to-one correspondence between V and \mathbb{F}^{n}. This correspondence is linear.

Notation. [$\mathbf{v}]_{\beta}$ denotes coordinates of \mathbf{v} relative to an ordered basis β, regarded as a column vector.

Matrix of a linear transformation

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear map. Let $\alpha=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ be an ordered basis for V and $\beta=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right]$ be an ordered basis for W.

Definition. The matrix of L relative to the bases α and β is an $m \times n$ matrix whose consecutive columns are coordinates of vectors $L\left(\mathbf{v}_{1}\right), L\left(\mathbf{v}_{2}\right), \ldots, L\left(\mathbf{v}_{n}\right)$ relative to the basis β.

Notation. $[L]_{\alpha}^{\beta}$ denotes the matrix of L relative to the bases α and β. That is,

$$
[L]_{\alpha}^{\beta}=\left(\left[L\left(\mathbf{v}_{1}\right)\right]_{\beta},\left[L\left(\mathbf{v}_{2}\right)\right]_{\beta}, \ldots,\left[L\left(\mathbf{v}_{n}\right)\right]_{\beta}\right) .
$$

If $V=W$ then $[L]_{\alpha}^{\alpha}$ is also denoted $[L]_{\alpha}$.

Let V and W be vector spaces and S be a subset of V.
Theorem 1 (i) If S spans V, then any linear transformation $L: V \rightarrow W$ is uniquely determined by its restriction to S.
(ii) If S is linearly independent then any function $L: S \rightarrow W$ can be extended to a linear transformation from V to W.
(iii) If S is a basis for V then any function $L: S \rightarrow W$ can be uniquely extended to a linear transformation from V to W. Idea of the proof: If $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $\mathbf{v}_{i} \in S, r_{i} \in \mathbb{F}$, then $L(\mathbf{v})=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)+\cdots+r_{n} L\left(\mathbf{v}_{n}\right)$ for any linear map $L: V \rightarrow W$.

Theorem 2 Suppose $\alpha=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis for V and $\beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ is an ordered basis for W. Then a mapping $M: \mathcal{L}(V, W) \rightarrow \mathcal{M}_{m, n}(\mathbb{F})$ given by $M(L)=[L]_{\alpha}^{\beta}$ is linear and invertible (i.e., one-to-one and onto).

Scalar product

Definition. The dot product of n-dimensional vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in \mathbb{R}^{n} is a scalar

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

The dot product is also called the scalar product.

Matrix multiplication

The product of matrices A and B with entries in a field \mathbb{F} is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A=\left(a_{i k}\right)$ be an $m \times n$ matrix and $B=\left(b_{k j}\right)$ be an $n \times p$ matrix. The product $A B$ is defined to be the $m \times p$ matrix $C=\left(c_{i j}\right)$ such that $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$
\left(\begin{array}{ccc}
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\hline a_{21} & a_{22} & \ldots & a_{2 n} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \\
& B=\left(\begin{array}{c|c|c|c}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right)=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right) \\
& \Longrightarrow A B=\left(\begin{array}{cccc}
\mathbf{v}_{1} \cdot \mathbf{w}_{1} & \mathbf{v}_{1} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{1} \cdot \mathbf{w}_{p} \\
\mathbf{v}_{2} \cdot \mathbf{w}_{1} & \mathbf{v}_{2} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{2} \cdot \mathbf{w}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{m} \cdot \mathbf{w}_{1} & \mathbf{v}_{m} \cdot \mathbf{w}_{2} & \ldots & \mathbf{v}_{m} \cdot \mathbf{w}_{p}
\end{array}\right)
\end{aligned}
$$

Examples.

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\sum_{k=1}^{n} x_{k} y_{k}\right)
$$

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{cccc}
y_{1} x_{1} & y_{1} x_{2} & \ldots & y_{1} x_{n} \\
y_{2} x_{1} & y_{2} x_{2} & \ldots & y_{2} x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n} x_{1} & y_{n} x_{2} & \ldots & y_{n} x_{n}
\end{array}\right) .
$$

Linear maps and matrix multiplication

Theorem 1 Suppose $\alpha=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis for V and $\beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ is an ordered basis for W. Then for any linear transformation $L: V \rightarrow W$ and any vector $\mathbf{v} \in V$,

$$
[L(\mathbf{v})]_{\beta}=[L]_{\alpha}^{\beta}[\mathbf{v}]_{\alpha} .
$$

Theorem 2 Suppose $\gamma=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ is an ordered basis for X. Then for any linear transformations $L: V \rightarrow W$ and $T: W \rightarrow X$,

$$
[T \circ L]_{\alpha}^{\gamma}=[T]_{\beta}^{\gamma}[L]_{\alpha}^{\beta} .
$$

Problem. Consider a linear operator L on the vector space of 2×2 matrices given by

$$
L\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

Find the matrix of L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Let γ denote the ordered basis $E_{1}, E_{2}, E_{3}, E_{4}$.
It follows from the definition that $[L]_{\gamma}$ is a 4×4 matrix whose columns are coordinates of the matrices

$$
L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)
$$

with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$.

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right)=1 E_{1}+0 E_{2}+3 E_{3}+0 E_{4}, \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right)=0 E_{1}+1 E_{2}+0 E_{3}+3 E_{4}, \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
4 & 0
\end{array}\right)=2 E_{1}+0 E_{2}+4 E_{3}+0 E_{4}, \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right)=0 E_{1}+2 E_{2}+0 E_{3}+4 E_{4} .
\end{aligned}
$$

Therefore

$$
[L]_{\gamma}=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right) .
$$

Thus the relation

$$
\left(\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & w_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

is equivalent to the relation

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1} \\
w_{1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) .
$$

Consider a linear operator $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $(L p)(x)=p(x+1)$. In the previous lecture, it was found that the matrix of L relative to the basis $1, x, x^{2}$ was $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.

This means that the polynomial identity

$$
b_{1}+b_{2} x+b_{3} x^{2}=a_{1}+a_{2}(x+1)+a_{3}(x+1)^{2}
$$

is equivalent to the relation

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) .
$$

Matrix transformations

Any $m \times n$ matrix $A \in \mathcal{M}_{m, n}(\mathbb{F})$ gives rise to a transformation $L_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ given by $L_{A}(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{F}^{n}$ and $L(\mathbf{x}) \in \mathbb{F}^{m}$ are regarded as column vectors. This transformation is linear.

Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0)^{t}, \mathbf{e}_{2}=(0,1,0)^{t}, \mathbf{e}_{3}=(0,0,1)^{t}$ be the standard basis for \mathbb{F}^{3}. We have that $L\left(\mathbf{e}_{1}\right)=(1,3,0)^{t}$, $L\left(\mathbf{e}_{2}\right)=(0,4,5)^{t}, \quad L\left(\mathbf{e}_{3}\right)=(2,7,8)^{t}$. Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{F}^{3} \rightarrow \mathbb{F}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for \mathbb{F}^{3}.

If such a map exists, then

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) .
\end{gathered}
$$

On the other hand, a transformation given by the above formula is indeed linear as

$$
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

Notice that columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem 1 Suppose $L: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{n}$. Columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{F}^{n}.

$$
\begin{gathered}
\mathbf{y}=A \mathbf{x} \Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{gathered}
$$

Theorem 2 Given $A \in \mathcal{M}_{m, n}(\mathbb{F})$, the matrix of the transformation L_{A} relative to the standard bases in \mathbb{F}^{n} and \mathbb{F}^{m} is exactly A.

