MATH 423
 Linear Algebra II

Lecture 10: Inverse matrix.

Change of coordinates.

Let V be a vector space and $\alpha=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ be an ordered basis for V.

Theorem 1 The coordinate mapping $C: V \rightarrow \mathbb{F}^{n}$ given by $C(\mathbf{v})=[\mathbf{v}]_{\alpha}$ is linear and invertible (i.e., one-to-one and onto).

Let W be another vector space and $\beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ be an ordered basis for W.

Theorem 2 The mapping $M: \mathcal{L}(V, W) \rightarrow \mathcal{M}_{m, n}(\mathbb{F})$ given by $M(L)=[L]_{\alpha}^{\beta}$ is linear and invertible.

Linear maps and matrix multiplication

Let V, W, and X be vector spaces. Suppose $\alpha=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis for $V, \beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ is an ordered basis for W, and $\gamma=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ is an ordered basis for X.

Theorem 1 For any linear transformation $L: V \rightarrow W$ and any vector $\mathbf{v} \in V$,

$$
[L(\mathbf{v})]_{\beta}=[L]_{\alpha}^{\beta}[\mathbf{v}]_{\alpha} .
$$

Theorem 2 For any linear transformations $L: V \rightarrow W$ and $T: W \rightarrow X$,

$$
[T \circ L]_{\alpha}^{\gamma}=[T]_{\beta}^{\gamma}[L]_{\alpha}^{\beta} .
$$

Theorem 3 For any linear operators $L: V \rightarrow V$ and $T: V \rightarrow V$,

$$
[T \circ L]_{\alpha}=[T]_{\alpha}[L]_{\alpha} .
$$

Identity matrix

Definition. The identity matrix (or unit matrix) is an $n \times n$ matrix $I=\left(a_{i j}\right)$ such that $a_{i i}=1$ and $a_{i j}=0$ for $i \neq j$. It is also denoted I_{n}.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Inverse matrix

Definition. Let $A \in \mathcal{M}_{n, n}(\mathbb{F})$. Suppose there exists an $n \times n$ matrix B such that $A B=B A=I_{n}$. Then the matrix A is called invertible and B is called the inverse of A (denoted $\left.A^{-1}\right)$.

$$
A A^{-1}=A^{-1} A=I
$$

Basic properties of inverse matrices:

- If $B=A^{-1}$ then $A=B^{-1}$. In other words, if A is invertible, so is A^{-1}, and $A=\left(A^{-1}\right)^{-1}$.
- The inverse matrix (if it exists) is unique.
- If $n \times n$ matrices A and B are invertible, so is $A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
- Similarly, $\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) .
$$

Proof: Let $B=\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$. Then

$$
A B=B A=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=(a d-b c) l_{2} .
$$

In the case $\operatorname{det} A \neq 0$, we have $A^{-1}=(\operatorname{det} A)^{-1} B$. In the case $\operatorname{det} A=0$, the matrix A is not invertible as otherwise $A B=O \Longrightarrow A^{-1}(A B)=A^{-1} O=O$
$\Longrightarrow\left(A^{-1} A\right) B=0 \Longrightarrow I_{2} B=O \Longrightarrow B=0$
$\Longrightarrow A=O$, but the zero matrix is not invertible.

Left multiplication

Any $m \times n$ matrix $A \in \mathcal{M}_{m, n}(\mathbb{F})$ gives rise to a linear transformation $L_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ given by $L_{A}(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{F}^{n}$ and $L(\mathbf{x}) \in \mathbb{F}^{m}$ are regarded as column vectors.

Theorem 1 The matrix of the transformation L_{A} relative to the standard bases in \mathbb{F}^{n} and \mathbb{F}^{m} is exactly A.

Theorem 2 Suppose $L: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ is a linear map.
Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{n}$. Columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{F}^{n}.

Matrix of a linear transformation (revisited)

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map.
Let $\alpha=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ be a basis for V and $g_{1}: V \rightarrow \mathbb{F}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ be a basis for W and $g_{2}: W \rightarrow \mathbb{F}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{F}^{n} to \mathbb{F}^{m}. It is uniquely represented as $\mathbf{x} \mapsto A \mathbf{x}$, where $A \in \mathcal{M}_{m, n}(\mathbb{F})$.
Theorem $A=[f]_{\alpha}^{\beta}$, the matrix of the transformation f relative to the bases α and β.

Change of coordinates

Let V be a vector space of dimension n.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{F}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{F}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a linear operator on \mathbb{F}^{n}. It has the form $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the basis $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,0,1), \mathbf{v}_{3}=(1,2,1)$ to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, and then from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
Let U_{1} be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and U_{2} be the transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$:

$$
U_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right), \quad U_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \Longrightarrow$ coordinates \mathbf{x} Basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \Longrightarrow$ coordinates $U_{1} \mathbf{x}$
Basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \Longrightarrow$ coordinates $U_{2}^{-1}\left(U_{1} \mathbf{x}\right)=\left(U_{2}^{-1} U_{1}\right) \mathbf{x}$
Thus the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is $U_{2}^{-1} U_{1}$.

$$
\begin{gathered}
U_{2}^{-1} U_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right) \\
=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

Problem. Consider a linear operator $L: \mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let N be the desired matrix. Columns of N are coordinates of the vectors $L\left(\mathbf{v}_{1}\right)$ and $L\left(\mathbf{v}_{2}\right)$ w.r.t. the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$.

$$
L\left(\mathbf{v}_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{3}{1}=\binom{4}{1}, \quad L\left(\mathbf{v}_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{1} .
$$

Clearly, $\quad L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}=1 \mathbf{v}_{1}+0 \mathbf{v}_{2}$.
$L\left(\mathbf{v}_{1}\right)=a \mathbf{v}_{1}+b \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}3 a+2 b=4 \\ a+b=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}a=2 \\ b=-1\end{array}\right.\right.$
Thus $N=\left(\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right)$.

Change of coordinates for a linear operator

Let $L: V \rightarrow V$ be a linear operator on a vector space V.
Let A be the matrix of L relative to a basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ for V. Let B be the matrix of L relative to another basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for V.

Let U be the transition matrix from the basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$.

It follows that $U A \mathbf{x}=B U \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{n} \Longrightarrow U A=B U$. Then $A=U^{-1} B U$ and $B=U A U^{-1}$.

Problem. Consider a linear operator $L: \mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let S be the matrix of L with respect to the standard basis, N be the matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, and U be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}$. Then $N=U^{-1} S U$.

$$
\begin{gathered}
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right), \\
N=U^{-1} S U=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
=\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

