
MATH 423

Linear Algebra II

Lecture 10:
Inverse matrix.

Change of coordinates.



Let V be a vector space and α = [v1, . . . , vn] be an
ordered basis for V .

Theorem 1 The coordinate mapping C : V → F
n

given by C (v) = [v]α is linear and invertible (i.e.,
one-to-one and onto).

Let W be another vector space and
β = [w1, . . . ,wm] be an ordered basis for W .

Theorem 2 The mapping
M : L(V , W ) → Mm,n(F) given by M(L) = [L]βα is
linear and invertible.



Linear maps and matrix multiplication

Let V , W , and X be vector spaces. Suppose α = [v1, . . . , vn]
is an ordered basis for V , β = [w1, . . . ,wm] is an ordered
basis for W , and γ = [x1, . . . , xk ] is an ordered basis for X .

Theorem 1 For any linear transformation L : V → W and
any vector v ∈ V ,

[L(v)]β = [L]βα[v]α.

Theorem 2 For any linear transformations L : V → W and
T : W → X ,

[T◦L]γα = [T ]γβ[L]βα.

Theorem 3 For any linear operators L : V → V and
T : V → V ,

[T◦L]α = [T ]α[L]α.



Identity matrix

Definition. The identity matrix (or unit matrix)
is an n×n matrix I = (aij) such that aii = 1 and
aij = 0 for i 6= j . It is also denoted In.

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0
0 1 0
0 0 1



.

In general, I =







1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1






.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Inverse matrix

Definition. Let A ∈ Mn,n(F). Suppose there
exists an n×n matrix B such that AB = BA = In.
Then the matrix A is called invertible and B is
called the inverse of A (denoted A−1).

AA−1 = A−1A = I

Basic properties of inverse matrices:

• If B = A−1 then A = B−1. In other words, if A is
invertible, so is A−1, and A = (A−1)−1.

• The inverse matrix (if it exists) is unique.

• If n×n matrices A and B are invertible, so is AB , and
(AB)−1 = B−1A−1.

• Similarly, (A1A2 . . . Ak)
−1 = A−1

k
. . . A−1

2
A−1

1
.



Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is det A = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0.

If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0. If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

Proof: Let B =

(

d −b

−c a

)

. Then

AB = BA =

(

ad−bc 0
0 ad−bc

)

= (ad − bc)I2.

In the case det A 6= 0, we have A−1 = (det A)−1B .
In the case det A = 0, the matrix A is not invertible as
otherwise AB = O =⇒ A−1(AB) = A−1O = O

=⇒ (A−1A)B = O =⇒ I2B = O =⇒ B = O

=⇒ A = O, but the zero matrix is not invertible.



Left multiplication

Any m×n matrix A ∈ Mm,n(F) gives rise to a
linear transformation LA : F

n → F
m given by

LA(x) = Ax, where x ∈ F
n and L(x) ∈ F

m are
regarded as column vectors.

Theorem 1 The matrix of the transformation LA

relative to the standard bases in F
n and F

m is
exactly A.

Theorem 2 Suppose L : F
n → F

m is a linear map.
Then there exists an m×n matrix A such that
L(x) = Ax for all x ∈ F

n. Columns of A are
vectors L(e1), L(e2), . . . , L(en), where e1, e2, . . . , en

is the standard basis for F
n.



Matrix of a linear transformation (revisited)

Let V , W be vector spaces and f : V → W be a linear map.
Let α = [v1, v2, . . . , vn] be a basis for V and g1 : V → F

n

be the coordinate mapping corresponding to this basis.
Let β = [w1, . . . ,wm] be a basis for W and g2 : W → F

m

be the coordinate mapping corresponding to this basis.

V
f

−→ W

g1





y





yg2

F
n −→ F

m

The composition g2◦f ◦g
−1

1
is a linear mapping of F

n to F
m.

It is uniquely represented as x 7→ Ax, where A ∈ Mm,n(F).

Theorem A = [f ]βα, the matrix of the transformation f

relative to the bases α and β.



Change of coordinates

Let V be a vector space of dimension n.
Let v1, v2, . . . , vn be a basis for V and g1 : V → F

n be the
coordinate mapping corresponding to this basis.

Let u1,u2, . . . ,un be another basis for V and g2 : V → F
n

be the coordinate mapping corresponding to this basis.

V
g1

ւ
g2

ց

F
n −→ F

n

The composition g2◦g
−1

1
is a linear operator on F

n.
It has the form x 7→ Ux, where U is an n×n matrix.

U is called the transition matrix from v1, v2 . . . , vn to
u1,u2 . . . ,un. Columns of U are coordinates of the vectors
v1, v2, . . . , vn with respect to the basis u1,u2, . . . ,un.



Problem. Find the transition matrix from the
basis v1 = (1, 2, 3), v2 = (1, 0, 1), v3 = (1, 2, 1) to
the basis u1 = (1, 1, 0), u2 = (0, 1, 1), u3 = (1, 1, 1).

It is convenient to make a two-step transition:
first from v1, v2, v3 to e1, e2, e3, and then from
e1, e2, e3 to u1,u2,u3.

Let U1 be the transition matrix from v1, v2, v3 to
e1, e2, e3 and U2 be the transition matrix from
u1,u2,u3 to e1, e2, e3:

U1 =





1 1 1
2 0 2
3 1 1



, U2 =





1 0 1
1 1 1
0 1 1



.



Basis v1, v2, v3 =⇒ coordinates x
Basis e1, e2, e3 =⇒ coordinates U1x

Basis u1,u2,u3 =⇒ coordinates U−1

2
(U1x)=(U−1

2
U1)x

Thus the transition matrix from v1, v2, v3 to
u1,u2,u3 is U−1

2
U1.

U−1

2
U1 =





1 0 1
1 1 1
0 1 1





−1 



1 1 1
2 0 2
3 1 1





=





0 1 −1
−1 1 0

1 −1 1









1 1 1
2 0 2
3 1 1



 =





−1 −1 1
1 −1 1
2 2 0



.



Problem. Consider a linear operator L : F
2 → F

2,

L

(

x

y

)

=

(

1 1
0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let N be the desired matrix. Columns of N are coordinates of
the vectors L(v1) and L(v2) w.r.t. the basis v1, v2.

L(v1) =

(

1 1
0 1

)(

3
1

)

=

(

4
1

)

, L(v2) =

(

1 1
0 1

)(

2
1

)

=

(

3
1

)

.

Clearly, L(v2) = v1 = 1v1 + 0v2.

L(v1) = av1 + bv2 ⇐⇒

{

3a + 2b = 4
a + b = 1

⇐⇒

{

a = 2
b = −1

Thus N =

(

2 1
−1 0

)

.



Change of coordinates for a linear operator

Let L : V → V be a linear operator on a vector space V .

Let A be the matrix of L relative to a basis a1, a2, . . . , an

for V . Let B be the matrix of L relative to another basis
b1,b2, . . . ,bn for V .

Let U be the transition matrix from the basis a1, a2, . . . , an

to b1,b2, . . . ,bn.

a-coordinates of v
A

−→ a-coordinates of L(v)

U




y





y
U

b-coordinates of v
B

−→ b-coordinates of L(v)

It follows that UAx = BUx for all x ∈ F
n =⇒ UA = BU .

Then A = U−1BU and B = UAU−1.



Problem. Consider a linear operator L : F
2 → F

2,

L

(

x

y

)

=

(

1 1
0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let S be the matrix of L with respect to the standard basis,
N be the matrix of L with respect to the basis v1, v2, and U be
the transition matrix from v1, v2 to e1, e2. Then N = U−1SU .

S =

(

1 1
0 1

)

, U =

(

3 2
1 1

)

,

N = U−1SU =

(

1 −2
−1 3

) (

1 1
0 1

) (

3 2
1 1

)

=

(

1 −1
−1 2

) (

3 2
1 1

)

=

(

2 1
−1 0

)

.


