
MATH 423

Linear Algebra II

Lecture 11:
Change of coordinates (continued).

Isomorphism of vector spaces.



Change of coordinates

Let V be a vector space of dimension n.
Let v1, v2, . . . , vn be a basis for V and g1 : V → F

n be the
coordinate mapping corresponding to this basis.
Let u1, u2, . . . , un be another basis for V and g2 : V → F

n

be the coordinate mapping corresponding to this basis.

V
g1

ւ
g2

ց
F
n −→ F

n

The composition g2◦g
−1

1
is a linear operator on F

n.
It has the form x 7→ Ux, where U is an n×n matrix.

U is called the transition matrix from v1, v2 . . . , vn to
u1, u2 . . . , un. Columns of U are coordinates of the vectors
v1, v2, . . . , vn with respect to the basis u1, u2, . . . , un.



Change of coordinates for a linear operator

Let L : V → V be a linear operator on a vector space V .

Let A be the matrix of L relative to a basis a1, a2, . . . , an
for V . Let B be the matrix of L relative to another basis
b1, b2, . . . , bn for V .

Let U be the transition matrix from the basis a1, a2, . . . , an
to b1, b2, . . . , bn.

a-coordinates of v
A

−→ a-coordinates of L(v)

U




y





y
U

b-coordinates of v
B

−→ b-coordinates of L(v)

It follows that UAx = BUx for all x ∈ F
n =⇒ UA = BU.

Then A = U−1BU and B = UAU−1.



Problem. Consider a linear operator L : F2 → F
2,

L

(

x

y

)

=

(

1 1

0 1

)(

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let S be the matrix of L with respect to the standard basis,
N be the matrix of L with respect to the basis v1, v2, and U be
the transition matrix from v1, v2 to e1, e2. Then N = U−1SU.

S =

(

1 1
0 1

)

, U =

(

3 2
1 1

)

,

N = U−1SU =

(

1 −2
−1 3

)(

1 1
0 1

)(

3 2
1 1

)

=

(

1 −1
−1 2

)(

3 2
1 1

)

=

(

2 1
−1 0

)

.



Similarity

Definition. An n×n matrix B is said to be similar
to an n×n matrix A if B = S−1AS for some

nonsingular n×n matrix S .

Remark. Two n×n matrices are similar if and only
if they represent the same linear operator on F

n

with respect to different bases.

Theorem Similarity is an equivalence relation,

which means that
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B ;

(iii) if A is similar to B and B is similar to C , then
A is similar to C .



Theorem Let V ,W be finite-dimensional vector
spaces and f : V → W be a linear map. Then one
can choose bases for V and W so that the

respective matrix of f is has the block form
(

Ir O

O O

)

,

where r is the rank of f .

Example. With a suitable choice of bases, any

linear map f : F3 → F
2 has one of the following

matrices:
(

0 0 0
0 0 0

)

,

(

1 0 0
0 0 0

)

,

(

1 0 0
0 1 0

)

.



Proof of the theorem:

Let v1, v2, . . . , vk be a basis for the null-space
N (f ).

Extend it to a basis v1, . . . , vk , u1, . . . , ur for V .

Then f (u1), f (u2), . . . , f (ur) is a basis for the
range R(f ).

Extend it to a basis f (u1), . . . , f (ur),w1, . . . ,wl

for W .

Now the matrix of f with respect to bases

[u1, . . . , ur , v1, . . . , vk ] and
[f (u1), . . . , f (ur),w1, . . . ,wl ] is

(

Ir O

O O

)

.



Definition. A map f : V1 → V2 is one-to-one if it
maps different elements from V1 to different

elements in V2. The map f is onto if any element
y ∈ V2 is represented as f (x) for some x ∈ V1.

If the map f is both one-to-one and onto, then
the inverse map f −1 : V2 → V1 is well defined.

Now let V1,V2 be vector spaces and L : V1 → V2

be a linear map.

Theorem (i) The linear map L is one-to-one if

and only if N (L) = {0}.
(ii) The linear map L is onto if R(L) = V2.
(iii) If the linear map L is both one-to-one and

onto, then the inverse map L−1 is also linear.



Isomorphism

Definition. A linear map L : V1 → V2 is called an

isomorphism of vector spaces if it is both
one-to-one and onto.

The vector space V1 is said to be isomorphic to V2

if there exists an isomorphism L : V1 → V2.

The word “isomorphism” applies when two complex

structures can be mapped onto each other, in such

a way that to each part of one structure there is a

corresponding part in the other structure, where

“corresponding” means that the two parts play

similar roles in their respective structures.



Alternative notation

General maps

one-to-one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . injective

onto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . surjective
one-to-one and onto . . . . . . . . . . . . . . . . . . . . . . bijective

Linear maps

any map. . . . . . . . . . . . . . . . . . . . . . . . . . .homomorphism
one-to-one. . . . . . . . . . . . . . . . . . . . . . . . .monomorphism

onto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . epimorphism
one-to-one and onto . . . . . . . . . . . . . . . . . . isomorphism

Linear self-maps

any map . . . . . . . . . . . . . . . . . . . . . . . . . . . endomorphism
one-to-one and onto . . . . . . . . . . . . . . . . automorphism



Examples of isomorphism

• M1,3(F) is isomorphic to M3,1(F).

Isomorphism: (x1, x2, x3) 7→





x1
x2
x3



.

• M2,2(F) is isomorphic to F
4.

Isomorphism:

(

a b

c d

)

7→ (a, b, c , d).

• M2,3(F) is isomorphic to M3,2(F).

Isomorphism: A 7→ At .

• The plane z = 0 in R
3 is isomorphic to R

2.
Isomorphism: (x , y , 0) 7→ (x , y).



Examples of isomorphism

• Pn is isomorphic to R
n+1.

Isomorphism: a0+a1x+ · · ·+anx
n 7→ (a0, a1, . . . , an).

• P is isomorphic to R
∞
0 .

Isomorphism:
a0 + a1x + · · · + anx

n 7→ (a0, a1, . . . , an, 0, 0, . . . ).

• Mm,n(F) is isomorphic to L(Fn
,F

m).

Isomorphism: A 7→ LA, where LA(x) = Ax.

• Any vector space V of dimension n is isomorphic
to F

n.

Isomorphism: v 7→ [v]α, where α is a basis for V .



Isomorphism and dimension

Definition. Two sets S1 and S2 are said to be of the same
cardinality if there exists a bijective map f : S1 → S2.

Theorem 1 All bases of a fixed vector space V are

of the same cardinality.

Theorem 2 Two vector spaces are isomorphic if
and only if their bases are of the same cardinality.

In particular, a vector space V is isomorphic to F
n if

and only if dimV = n.

Remark. For a finite set, the cardinality is a synonym for the
number of its elements. For an infinite set, the cardinality is a
more sophisticated notion. For example, R∞ and P are both
infinite-dimensional vector spaces but they are not isomorphic.


