MATH 423
 Linear Algebra II

Lecture 11:

Change of coordinates (continued). Isomorphism of vector spaces.

Change of coordinates

Let V be a vector space of dimension n.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{F}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{F}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a linear operator on \mathbb{F}^{n}. It has the form $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Change of coordinates for a linear operator

Let $L: V \rightarrow V$ be a linear operator on a vector space V.
Let A be the matrix of L relative to a basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ for V. Let B be the matrix of L relative to another basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for V.

Let U be the transition matrix from the basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$.

It follows that $U A \mathbf{x}=B U \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{n} \Longrightarrow U A=B U$.
Then $A=U^{-1} B U$ and $B=U A U^{-1}$.

Problem. Consider a linear operator $L: \mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let S be the matrix of L with respect to the standard basis, N be the matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, and U be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}$. Then $N=U^{-1} S U$.

$$
\begin{gathered}
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right), \\
N=U^{-1} S U=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
=\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

Similarity

Definition. An $n \times n$ matrix B is said to be similar to an $n \times n$ matrix A if $B=S^{-1} A S$ for some nonsingular $n \times n$ matrix S.

Remark. Two $n \times n$ matrices are similar if and only if they represent the same linear operator on \mathbb{F}^{n} with respect to different bases.

Theorem Similarity is an equivalence relation, which means that
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then A is similar to C.

Theorem Let V, W be finite-dimensional vector spaces and $f: V \rightarrow W$ be a linear map. Then one can choose bases for V and W so that the respective matrix of f is has the block form

$$
\left(\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right)
$$

where r is the rank of f.
Example. With a suitable choice of bases, any linear map $f: \mathbb{F}^{3} \rightarrow \mathbb{F}^{2}$ has one of the following matrices:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Proof of the theorem:
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be a basis for the null-space $\mathcal{N}(f)$.
Extend it to a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ for V.
Then $f\left(\mathbf{u}_{1}\right), f\left(\mathbf{u}_{2}\right), \ldots, f\left(\mathbf{u}_{r}\right)$ is a basis for the range $\mathcal{R}(f)$.
Extend it to a basis $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{r}\right), \mathbf{w}_{1}, \ldots, \mathbf{w}_{/}$ for W.

Now the matrix of f with respect to bases $\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ and
$\left[f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{r}\right), \mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right]$ is

$$
\left(\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right)
$$

Definition. A map $f: V_{1} \rightarrow V_{2}$ is one-to-one if it maps different elements from V_{1} to different elements in V_{2}. The map f is onto if any element $\mathbf{y} \in V_{2}$ is represented as $f(\mathbf{x})$ for some $\mathbf{x} \in V_{1}$.

If the map f is both one-to-one and onto, then the inverse map $f^{-1}: V_{2} \rightarrow V_{1}$ is well defined.
Now let V_{1}, V_{2} be vector spaces and $L: V_{1} \rightarrow V_{2}$ be a linear map.
Theorem (i) The linear map L is one-to-one if and only if $\mathcal{N}(L)=\{\mathbf{0}\}$.
(ii) The linear map L is onto if $\mathcal{R}(L)=V_{2}$.
(iii) If the linear map L is both one-to-one and onto, then the inverse $\operatorname{map} L^{-1}$ is also linear.

Isomorphism

Definition. A linear map $L: V_{1} \rightarrow V_{2}$ is called an isomorphism of vector spaces if it is both one-to-one and onto.
The vector space V_{1} is said to be isomorphic to V_{2} if there exists an isomorphism $L: V_{1} \rightarrow V_{2}$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Alternative notation

General maps

one-to-one . injectiveonto . surjectiveone-to-one and onto bijective
Linear maps
any map homomorphismone-to-one. monomorphismonto.. epimorphismone-to-one and onto isomorphism
Linear self-maps
any map endomorphism
one-to-one and onto automorphism

Examples of isomorphism

- $\mathcal{M}_{1,3}(\mathbb{F})$ is isomorphic to $\mathcal{M}_{3,1}(\mathbb{F})$.

Isomorphism: $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.

- $\mathcal{M}_{2,2}(\mathbb{F})$ is isomorphic to \mathbb{F}^{4}.

Isomorphism: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto(a, b, c, d)$.

- $\mathcal{M}_{2,3}(\mathbb{F})$ is isomorphic to $\mathcal{M}_{3,2}(\mathbb{F})$.

Isomorphism: $A \mapsto A^{t}$.

- The plane $z=0$ in \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}. Isomorphism: $\quad(x, y, 0) \mapsto(x, y)$.

Examples of isomorphism

- \mathcal{P}_{n} is isomorphic to \mathbb{R}^{n+1}.

Isomorphism: $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.

- \mathcal{P} is isomorphic to \mathbb{R}_{0}^{∞}.

Isomorphism:
$a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto\left(a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots\right)$.

- $\mathcal{M}_{m, n}(\mathbb{F})$ is isomorphic to $\mathcal{L}\left(\mathbb{F}^{n}, \mathbb{F}^{m}\right)$.

Isomorphism: $A \mapsto L_{A}$, where $L_{A}(\mathbf{x})=A \mathbf{x}$.

- Any vector space V of dimension n is isomorphic to \mathbb{F}^{n}.
Isomorphism: $\mathbf{v} \mapsto[\mathbf{v}]_{\alpha}$, where α is a basis for V.

Isomorphism and dimension

Definition. Two sets S_{1} and S_{2} are said to be of the same cardinality if there exists a bijective map $f: S_{1} \rightarrow S_{2}$.

Theorem 1 All bases of a fixed vector space V are of the same cardinality.

Theorem 2 Two vector spaces are isomorphic if and only if their bases are of the same cardinality. In particular, a vector space V is isomorphic to \mathbb{F}^{n} if and only if $\operatorname{dim} V=n$.

Remark. For a finite set, the cardinality is a synonym for the number of its elements. For an infinite set, the cardinality is a more sophisticated notion. For example, \mathbb{R}^{∞} and \mathcal{P} are both infinite-dimensional vector spaces but they are not isomorphic.

