
MATH 423

Linear Algebra II

Lecture 12:
Review for Test 1.



Topics for Test 1

Vector spaces (F/I/S 1.1–1.7, 2.2, 2.4)

• Vector spaces: axioms and basic properties.

• Basic examples of vector spaces (coordinate vectors,
matrices, polynomials, functional spaces).

• Subspaces.

• Span, spanning set.

• Linear independence.

• Basis and dimension.

• Various characterizations of a basis.

• Basis and coordinates.

• Change of coordinates, transition matrix.

•∗ Vector space over a field.



Topics for Test 1

Linear transformations (F/I/S 2.1–2.5)

• Linear transformations: definition and basic properties.

• Linear transformations: basic examples.

• Vector space of linear transformations.

• Range and null-space of a linear map.

• Matrix of a linear transformation.

• Matrix algebra and composition of linear maps.

• Characterization of linear maps from F
n to F

m.

• Change of coordinates for a linear operator.

• Isomorphism of vector spaces.



Sample problems for Test 1

Problem 1 (20 pts.) Let P3 be the vector space
of all polynomials (with real coefficients) of degree

at most 3. Determine which of the following
subsets of P3 are subspaces. Briefly explain.

(i) The set S1 of polynomials p(x) ∈ P3 such that
p(0) = 0.
(ii) The set S2 of polynomials p(x) ∈ P3 such that

p(0) = 0 and p(1) = 0.
(iii) The set S3 of polynomials p(x) ∈ P3 such that

p(0) = 0 or p(1) = 0.
(iv) The set S4 of polynomials p(x) ∈ P3 such that

(p(0))2 + 2(p(1))2 + (p(2))2 = 0.



Sample problems for Test 1

Problem 2 (20 pts.) Let V be a subspace of

F(R) spanned by functions ex and e−x . Let L be a

linear operator on V such that

(

2 −1
−3 2

)

is the

matrix of L relative to the basis ex , e−x . Find the
matrix of L relative to the basis

cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).

Problem 3 (25 pts.) Suppose V1 and V2 are
subspaces of a vector space V such that

dimV1 = 5, dimV2 = 3, dim(V1 + V2) = 6. Find
dim(V1 ∩ V2). Explain your answer.



Sample problems for Test 1

Problem 4 (25 pts.) Consider a linear
transformation T : M2,2(R) → M2,3(R) given by

T (A) = A

(

1 1 1
1 0 0

)

for all 2× 2 matrices A.

Find bases for the range and for the null-space of T .

Bonus Problem 5 (15 pts.) Suppose V1 and V2

are real vector spaces, dimV1 = m, dimV2 = n.
Let B(V1,V2) denote the subspace of F(V1 × V2)

consisting of bilinear functions (i.e., functions of two
variables x ∈ V1 and y ∈ V2 that depend linearly

on each variable). Prove that B(V1,V2) is
isomorphic to Mm,n(R).



Problem 1. Let P3 be the vector space of all
polynomials (with real coefficients) of degree at

most 3. Determine which of the following subsets
of P3 are vector subspaces. Briefly explain.

How to check whether a subset S of a vector space
is a subspace?

• Default approach: show that S is a nonempty set closed
under addition and scalar multiplication.

• Represent S as the span of some collection of vectors.

• Represent S as the null-space of a linear transformation.

• Represent S as the intersection of some known subspaces.



(i) The set S1 of polynomials p(x) ∈ P3 such that
p(0) = 0.

S1 is not empty because it contains the zero

polynomial.

p1(0) = p2(0) = 0 =⇒ p1(0) + p2(0) = 0
=⇒ (p1 + p2)(0) = 0.

Hence S1 is closed under addition.

p(0) = 0 =⇒ rp(0) = 0 =⇒ (rp)(0) = 0.
Hence S1 is closed under scalar multiplication.

Thus S1 is a subspace of P3.



(i) The set S1 of polynomials p(x) ∈ P3 such that
p(0) = 0.

Alternatively, consider a functional ℓ : P3 → R

given by ℓ[p(x)] = p(0).

It is easy to see that ℓ is a linear functional.

Clearly, S1 is the null-space of ℓ, hence it is a

subspace of P3.



(ii) The set S2 of polynomials p(x) ∈ P3 such that

p(0) = 0 and p(1) = 0.

• S2 contains the zero polynomial,
• S2 is closed under addition,
• S2 is closed under scalar multiplication.

Thus S2 is a subspace of P3.

Alternatively, let S ′

1
denote the set of polynomials p(x) ∈ P3

such that p(1) = 0. The set S ′

1
is a subspace of P3 for the

same reason as S1. Clearly, S2 = S1 ∩ S ′

1
. Now the

intersection of two subspaces of P3 is also a subspace.

Alternatively, S2 is the null-space of a linear transformation
L : P3 → R

2 given by L[p(x)] = (p(0), p(1)).



(iii) The set S3 of polynomials p(x) ∈ P3 such that

p(0) = 0 or p(1) = 0.

• S3 contains the zero polynomial,

• S3 is closed under scalar multiplication,

• however S3 is not closed under addition.

For example, p1(x) = x and p2(x) = x − 1 are in
S3 but (p1 + p2)(x) = 2x − 1 is not in S3.

Thus S3 is not a subspace of P3.



(iv) The set S4 of polynomials p(x) ∈ P3 such that
(p(0))2 + 2(p(1))2 + (p(2))2 = 0.

Since coefficients of a polynomial p(x) ∈ P3 are

real, it belongs to S4 if and only if
p(0) = p(1) = p(2) = 0.

Hence S4 is the null-space of a linear transformation
L : P3 → R

3 given by L[p(x)] = (p(0), p(1), p(2)).
Thus S4 is a subspace.



Problem 2. Let V be a subspace of F(R) spanned by
functions ex and e−x . Let L be a linear operator on V such

that

(

2 −1
−3 2

)

is the matrix of L relative to the basis ex ,

e−x . Find the matrix of L relative to the basis
cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).

Let α denote the basis ex , e−x and β denote the basis cosh x ,
sinh x for V . Let A denote the matrix of the operator L
relative to α (which is given) and B denote the matrix of L
relative to β (which is to be found). By definition of the
functions cosh x and sinh x , the transition matrix from β to α

is U = 1

2

(

1 1
1 −1

)

. It follows that B = U−1AU. One easily

checks that 2U2 = I . Hence U−1 = 2U so that

B = U−1AU =

(

1 1
1 −1

)(

2 −1
−3 2

)

·
1

2

(

1 1
1 −1

)

=

(

0 −1
1 4

)

.



Problem 3. Suppose V1 and V2 are subspaces of a vector
space V such that dimV1 = 5, dimV2 = 3, dim(V1 +V2) = 6.
Find dim(V1 ∩ V2). Explain your answer.

We are going to show that
dim(V1 ∩ V2) = dimV1 + dimV2 − dim(V1 + V2) for any
finite-dimensional subspaces V1 and V2. In our particular case
this will imply that dim(V1 ∩ V2) = 2.

First we choose a basis v1, v2, . . . , vk for the intersection
V1 ∩ V2. The set S0 = {v1, v2, . . . , vk} is linearly independent
in both V1 and V2. Therefore we can extend this set to a
basis for V1 and to a basis for V2. Let u1, u2, . . . , um be
vectors that extend S0 to a basis for V1 and w1,w2, . . . ,wn be
vectors that extend S0 to a basis for V2. It remains to show
that v1, . . . , vk , u1, . . . , um,w1, . . . ,wn is a basis for V1 + V2.
Then dimV1 = k +m, dimV2 = k + n,
dim(V1 + V2) = k +m + n, and dim(V1 ∩ V2) = k.



By definition, the subspace V1 + V2 consists of vector sums
x+ y, where x ∈ V1 and y ∈ V2. Since x is a linear
combination of vectors v1, . . . , vk , u1, . . . , um and y is a linear
combination of vectors v1, . . . , vk ,w1, . . . ,wn, it follows that
x+ y is a linear combination of vectors v1, . . . , vk , u1, . . . , um,
w1, . . . ,wn. Therefore these vectors span V1 + V2.

Now we prove that vectors v1, . . . , vk , u1, . . . , um,w1, . . . ,wn

are linearly independent. Assume

r1v1 + · · ·+ rkvk + s1u1 + · · ·+ smum + t1w1 + · · ·+ tnwn = 0

for some scalars ri , sj , tl . Let x = s1u1 + · · ·+ smum,
y = t1w1 + · · ·+ tnwn, and z = r1v1 + · · ·+ rkvk . Then
x ∈ V1, y ∈ V2, and z ∈ V1 ∩ V2. The equality x+ y + z = 0
implies that x = −y − z ∈ V2 and y = −x− z ∈ V1. Hence
both x and y are in V1 ∩ V2.

From this we derive that x = y = z = 0. It follows that all
coefficients are zeros. Thus the vectors
v1, . . . , vk , u1, . . . , um,w1, . . . ,wn are linearly independent.



Problem 4. Consider a linear transformation
T : M2,2(R) → M2,3(R) given by

T (A) = A

(

1 1 1
1 0 0

)

for all 2× 2 matrices A. Find bases for the range and for the
null-space of T .

Let A =

(

a b
c d

)

. Then T (A) =

(

a + b a a
c + d c c

)

= aB1 + bB2 + cB3 + dB4, where B1 =

(

1 1 1
0 0 0

)

, B2 =
(

1 0 0
0 0 0

)

, B3 =

(

0 0 0
1 1 1

)

, B4 =

(

0 0 0
1 0 0

)

.

Therefore the range of T is spanned by the matrices
B1,B2,B3,B4. If aB1 + bB2 + cB3 + dB4 = O for some
scalars a, b, c, d ∈ R, then a + b = a = c + d = d = 0, which
implies a = b = c = d = 0. Therefore B1,B2,B3,B4 are
linearly independent so that they form a basis for the range of
T . Also, it follows that the null-space of T is trivial.



Bonus Problem 5. Suppose V1 and V2 are real vector
spaces of dimension m and n, respectively. Let B(V1,V2)
denote the subspace of F(V1 × V2) consisting of bilinear
functions (i.e., functions of two variables x ∈ V1 and y ∈ V2

that depend linearly on each variable). Prove that B(V1,V2) is
isomorphic to Mm,n(R).

Let α = [v1, . . . , vm] be an ordered basis for V1 and
β = [w1, . . . ,wn] be an ordered basis for V2. For any matrix
C ∈ Mm,n(R) we define a function fC : V1 × V2 → R by
fC (x, y) = ([x]α)

tC [y]β for all x ∈ V1 and y ∈ V2.

It is easy to observe that fC is bilinear. Moreover, the
expression fC (x, y) depends linearly on C as well. This implies
that a transformation L : Mm,n(R) → B(V1,V2) given by
L(C ) = fC is linear. The transformation L is one-to-one since
the matrix C can be recovered from the function fC . Namely,
if C = (cij), then cij = fC (vi ,wj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.



It remains to show that L is onto. Take any function
f ∈ B(V1,V2) and vectors x ∈ V1, y ∈ V2. We have
x = r1v1 + · · ·+ rmvm and y = s1w1 + · · ·+ snwn for some
scalars ri , sj . Using bilinearity of f , we obtain

f (x, y) = f (r1v1 + · · ·+ rmvm, y) =

m
∑

i=1

ri f (vi , y)

=
m
∑

i=1

ri f (vi , s1w1 + · · ·+ snwn) =
m
∑

i=1

n
∑

j=1

risj f (vi ,wj)

= (r1, r2 . . . , rm)









f (v1,w1) f (v1,w2) . . . f (v1,wn)
f (v2,w1) f (v2,w2) . . . f (v2,wn)

...
...

. . .
...

f (vm,w1) f (vm,w2) . . . f (vm,wn)

















s1
s2
...
sn









= ([x]α)
t C [y]β

so that f = fC for some matrix C ∈ Mm,n(R).


