MATH 423
 Linear Algebra II

Lecture 13:
Advanced constructions of vector spaces.

Cartesian product

Given two sets V_{1} and V_{2}, the Cartesian product $V_{1} \times V_{2}$ is the set of all pairs (\mathbf{x}, \mathbf{y}), where $\mathbf{x} \in V_{1}$ and $\mathbf{y} \in V_{2}$.

If both V_{1} and V_{2} are vector spaces (over the same field \mathbb{F}) then $V_{1} \times V_{2}$ is naturally endowed with the structure of a vector space. Namely, the linear operations are given by

$$
\begin{aligned}
\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) & =\left(\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{y}_{1}+\mathbf{y}_{2}\right), \\
r(\mathbf{x}, \mathbf{y}) & =(r \mathbf{x}, r \mathbf{y})
\end{aligned}
$$

for all $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x} \in V_{1}, \mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y} \in V_{2}$, and $r \in \mathbb{F}$.
Note that the zero vector in $V_{1} \times V_{2}$ is $\left(\mathbf{0}_{1}, \mathbf{0}_{2}\right)$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are the zero vectors in V_{1} and V_{2}, respectively.

Theorem $\operatorname{dim}\left(V_{1} \times V_{2}\right)=\operatorname{dim} V_{1}+\operatorname{dim} V_{2}$.
The theorem follows from the next lemma.
Lemma Suppose S_{1} is a basis for V_{1} and S_{2} is a basis for V_{2}. Then the union of sets $S_{1} \times\left\{\mathbf{0}_{2}\right\}$ and $\left\{\mathbf{0}_{1}\right\} \times S_{2}$ is a basis for $V_{1} \times V_{2}$.
Idea of the proof: $(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}, \mathbf{0}_{2}\right)+\left(\mathbf{0}_{1}, \mathbf{y}\right)$ for all $\mathbf{x} \in V_{1}$, $\mathbf{y} \in V_{2}$. Also, if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m} \in S_{1}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in S_{2}$, then

$$
\begin{aligned}
r_{1}\left(\mathbf{x}_{1}, \mathbf{0}_{2}\right) & +\cdots+r_{m}\left(\mathbf{x}_{m}, \mathbf{0}_{2}\right)+s_{1}\left(\mathbf{0}_{1}, \mathbf{y}_{1}\right)+\cdots+s_{n}\left(\mathbf{0}_{1}, \mathbf{y}_{n}\right) \\
& =\left(r_{1} \mathbf{x}_{1}+\cdots+r_{m} \mathbf{x}_{m}, s_{1} \mathbf{y}_{1}+\ldots, s_{n} \mathbf{y}_{n}\right) .
\end{aligned}
$$

Similarly, for any vector spaces $V_{1}, V_{2}, \ldots, V_{k}$ we can define a vector space $V_{1} \times V_{2} \times \cdots \times V_{k}$. The dimension of this space is $\sum_{i=1}^{k} \operatorname{dim} V_{i}$.

Example. $\quad \mathbb{R}^{n}=\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text { times }}$.

Direct sum

Let V be a vector space. For any subsets $X_{1}, X_{2}, \ldots, X_{n}$ of V we define another subset
$X_{1}+X_{2}+\cdots+X_{n}=\left\{\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{n} \mid \mathbf{x}_{i} \in X_{i}, 1 \leq i \leq n\right\}$.
Theorem The set $X_{1}+X_{2}+\cdots+X_{n}$ is a subspace of V provided that each X_{i} is a subspace of V.

Suppose $V=V_{1}+V_{2}+\cdots+V_{n}$ for some subspaces V_{1}, \ldots, V_{n}. We say that V is the direct sum of the subspaces V_{i} and write $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ if any vector $\mathbf{x} \in V$ is uniquely expanded as $\mathbf{x}_{1}+\cdots+\mathbf{x}_{n}$, where $\mathbf{x}_{i} \in V_{i}$.

Example. $\quad V_{1} \times V_{2}=\left(V_{1} \times\left\{\mathbf{0}_{2}\right\}\right) \oplus\left(\left\{\mathbf{0}_{1}\right\} \times V_{2}\right)$ for any vector spaces V_{1} and V_{2}. The expansion is

$$
(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}, \mathbf{0}_{2}\right)+\left(\mathbf{0}_{1}, \mathbf{y}\right)
$$

Suppose $V_{1}, V_{2}, \ldots, V_{n}$ are subspaces of a vector space V. Consider a mapping
$f: V_{1} \times \cdots \times V_{n} \rightarrow V$ given by

$$
f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)=\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{n} .
$$

Theorem 1 (i) The mapping f is linear.
(ii) $V=V_{1}+V_{2}+\cdots+V_{n}$ if and only if f is onto. (iii) $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ if and only if f is an isomorphism.

Corollary $\operatorname{dim}\left(V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}\right)=\sum_{i=1}^{n} \operatorname{dim} V_{i}$.
Theorem 2 Suppose V_{1} and V_{2} are subspaces of V. Then the sum $V_{1}+V_{2}$ is direct if and only if $V_{1} \cap V_{2}=\{\mathbf{0}\}$.

Linear operations on sets

Let V be a vector space. Given two nonempty subsets X and Y of V, we define another subset, denoted $X+Y$, by $X+Y=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in X, \mathbf{y} \in Y\}$.
Given a nonempty subset $X \subset V$ and a scalar $r \in \mathbb{F}$, we define another subset, denoted $r X$, by $r X=\{r \mathbf{x} \mid \mathbf{x} \in X\}$.

The set of all nonempty subsets of V is not a vector space with respect to these operations unless $V=\{\mathbf{0}\}$.

Indeed, we have $X+\{\mathbf{0}\}=X$ and $X+V=V$ for any nonempty subset $X \subset V$. The first relation implies that only $\{\mathbf{0}\}$ could be the zero vector. Then the second relation implies that the set V has no additive inverse so that the axiom VS4 fails.

Quotient space

Let V_{0} be a subspace of a vector space V. A coset of V_{0} in V is any set of the form $\{\mathbf{x}\}+V_{0}$ (also denoted $\left.\mathbf{x}+V_{0}\right)$. The set of all cosets of V_{0} is denoted V / V_{0} and called the quotient of V by V_{0}.

Theorem $1 \mathrm{~V} / V_{0}$ is a vector space.
The theorem follows from the next lemma.
Lemma $\left(\mathbf{x}+V_{0}\right)+\left(\mathbf{y}+V_{0}\right)=(\mathbf{x}+\mathbf{y})+V_{0}$ and $r\left(\mathbf{x}+V_{0}\right)=r \mathbf{x}+V_{0}$ for any vectors $\mathbf{x}, \mathbf{y} \in V$ and scalar r.
Theorem $2 \operatorname{dim}\left(V / V_{0}\right)=\operatorname{dim} V-\operatorname{dim} V_{0}$.
Proof: Consider a mapping $\phi: V \rightarrow V / V_{0}$ given by $\phi(\mathbf{x})=\mathbf{x}+V_{0}$ for all $\mathbf{x} \in V$. By the above lemma, ϕ is linear. Clearly, ϕ is onto so that the range of ϕ is V / V_{0}. The zero vector of the vector space V / V_{0} is $\mathbf{0}+V_{0}=V_{0}$. It follows that the null-space of ϕ is V_{0}. By the dimension theorem, $\operatorname{dim}\left(V / V_{0}\right)+\operatorname{dim} V_{0}=\operatorname{dim} V$.

Given vector spaces V_{1} and V_{2}, let $B\left(V_{1}, V_{2}\right)$ denote the subspace of $\mathcal{F}\left(V_{1} \times V_{2}, \mathbb{F}\right)$ consisting of bilinear functions (i.e., functions of two variables $\mathbf{x} \in V_{1}$ and $\mathbf{y} \in V_{2}$ that depend linearly on each variable).

Theorem If $\operatorname{dim} V_{1}=m$ and $\operatorname{dim} V_{2}=n$, then $B\left(V_{1}, V_{2}\right)$ is isomorphic to $\mathcal{M}_{m, n}(\mathbb{F})$.
Proof: Let $\alpha=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right]$ be an ordered basis for V_{1} and $\beta=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right]$ be an ordered basis for V_{2}. For any matrix $C \in \mathcal{M}_{m, n}(\mathbb{F})$ we define a function $f_{C}: V_{1} \times V_{2} \rightarrow \mathbb{R}$ by $f_{C}(\mathbf{x}, \mathbf{y})=\left([\mathbf{x}]_{\alpha}\right)^{t} C[\mathbf{y}]_{\beta}$ for all $\mathbf{x} \in V_{1}$ and $\mathbf{y} \in V_{2}$.
It is easy to observe that f_{C} is bilinear. Moreover, the expression $f_{C}(\mathbf{x}, \mathbf{y})$ depends linearly on C as well. This implies that a transformation $L: \mathcal{M}_{m, n}(\mathbb{F}) \rightarrow B\left(V_{1}, V_{2}\right)$ given by $L(C)=f_{C}$ is linear. The transformation L is one-to-one since the matrix C can be recovered from the function f_{C}. Namely, if $C=\left(c_{i j}\right)$, then $c_{i j}=f_{C}\left(\mathbf{v}_{i}, \mathbf{w}_{j}\right), 1 \leq i \leq m, 1 \leq j \leq n$.

It remains to show that L is onto. Take any function $f \in B\left(V_{1}, V_{2}\right)$ and vectors $\mathbf{x} \in V_{1}, \mathbf{y} \in V_{2}$. We have $\mathbf{x}=r_{1} \mathbf{v}_{1}+\cdots+r_{m} \mathbf{v}_{m}$ and $\mathbf{y}=s_{1} \mathbf{w}_{1}+\cdots+s_{n} \mathbf{w}_{n}$ for some scalars r_{i}, s_{j}. Using bilinearity of f, we obtain

$$
\begin{gathered}
f(\mathbf{x}, \mathbf{y})=f\left(r_{1} \mathbf{v}_{1}+\cdots+r_{m} \mathbf{v}_{m}, \mathbf{y}\right)=\sum_{i=1}^{m} r_{i} f\left(\mathbf{v}_{i}, \mathbf{y}\right) \\
=\sum_{i=1}^{m} r_{i} f\left(\mathbf{v}_{i}, s_{1} \mathbf{w}_{1}+\cdots+s_{n} \mathbf{w}_{n}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i} s_{j} f\left(\mathbf{v}_{i}, \mathbf{w}_{j}\right) \\
=\left(r_{1}, r_{2} \ldots, r_{m}\right)\left(\begin{array}{cccc}
f\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{1}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{1}, \mathbf{w}_{n}\right) \\
f\left(\mathbf{v}_{2}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{2}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{2}, \mathbf{w}_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\mathbf{v}_{m}, \mathbf{w}_{1}\right) & f\left(\mathbf{v}_{m}, \mathbf{w}_{2}\right) & \ldots & f\left(\mathbf{v}_{m}, \mathbf{w}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right) \\
=\left([\mathbf{x}]_{\alpha}\right)^{t} C[\mathbf{y}]_{\beta}
\end{gathered}
$$

for some matrix $C \in \mathcal{M}_{m, n}(\mathbb{F})$. Then $f=f_{C}$.

