MATH 423 Linear Algebra II

Lecture 14: General linear equations. Elementary matrices.

General linear equations

Definition. A linear equation is an equation of the form

$$L(\mathbf{x}) = \mathbf{b}$$
,

where $L: V \to W$ is a linear mapping, **b** is a given vector from W, and **x** is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x}) = \mathbf{b}$ has a solution.

The null-space of *L* is the solution set of the **homogeneous** linear equation $L(\mathbf{x}) = \mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable and dim $\mathcal{N}(L) < \infty$, then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$$
,

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a basis for the null-space $\mathcal{N}(L)$, and t_1, \ldots, t_k are arbitrary scalars.

Example.
$$\begin{cases} x + y + z = 4, \\ x + 2y = 3. \end{cases}$$

 $L : \mathbb{R}^3 \to \mathbb{R}^2, \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$
Linear equation: $L(\mathbf{x}) = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.
 $\begin{cases} x + y + z = 4 \\ x + 2y = 3 \end{cases} \iff \begin{cases} x + y + z = 4 \\ y - z = -1 \end{cases}$
 $\iff \begin{cases} x + 2z = 5 \\ y - z = -1 \end{cases} \iff \begin{cases} x = 5 - 2z \\ y = -1 + z \end{cases}$
 $(x, y, z) = (5 - 2t, -1 + t, t) = (5, -1, 0) + t(-2, 1, 1).$

Example.
$$u'''(x) - 2u''(x) + u'(x) = e^{2x}$$
.

Linear operator $L: C^3(\mathbb{R}) \to C(\mathbb{R}), Lu = u''' - 2u'' + u'.$ Linear equation: Lu = b, where $b(x) = e^{2x}$.

According to the theory of differential equations, the initial value problem

$$\begin{cases} u'''(x) - 2u''(x) + u'(x) = g(x), & x \in \mathbb{R}, \\ u(a) = b_0, \\ u'(a) = b_1, \\ u''(a) = b_2 \end{cases}$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_0, b_1, b_2 \in \mathbb{R}$. It follows that $L(C^3(\mathbb{R})) = C(\mathbb{R})$.

Also, the initial data evaluation I(u) = (u(a), u'(a), u''(a)), which is a linear mapping $I : C^3(\mathbb{R}) \to \mathbb{R}^3$, is one-to-one and onto when restricted to $\mathcal{N}(L)$. Hence dim $\mathcal{N}(L) = 3$.

It is easy to check that $L(xe^x) = L(e^x) = L(1) = 0$. One can also show that xe^x , e^x , and 1 are linearly independent.

Example. $u'''(x) - 2u''(x) + u'(x) = e^{2x}$. Linear operator $L: C^3(\mathbb{R}) \to C(\mathbb{R})$, Lu = u''' - 2u'' + u'. Linear equation: Lu = b, where $b(x) = e^{2x}$.

It follows from the previous slide that functions xe^x , e^x and 1 form a basis for the null-space of L. It remains to find a particular solution.

 $L(e^{2x}) = 8e^{2x} - 2(4e^{2x}) + 2e^{2x} = 2e^{2x}.$ Since *L* is a linear operator, $L(\frac{1}{2}e^{2x}) = e^{2x}.$ Particular solution: $u_0(x) = \frac{1}{2}e^{2x}.$

Thus the general solution is

$$u(x) = \frac{1}{2}e^{2x} + t_1xe^x + t_2e^x + t_3.$$

Elementary row operations for matrices:

- (1) to interchange two rows;
- (2) to multiply a row by a nonzero scalar;
- (3) to add the *i*th row multiplied by some scalar r to the *j*th row.
- *Remark.* Rows are added and multiplied by scalars as vectors (namely, row vectors).
- Similarly, we define three types of **elementary column operations**.

$$\begin{pmatrix} \underline{a_{11} \quad a_{12} \quad \dots \quad a_{1n}} \\ \underline{a_{21} \quad a_{22} \quad \dots \quad a_{2n}} \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ \overline{a_{m1} \quad a_{m2} \quad \dots \quad a_{mn}} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix},$$

where $\mathbf{v}_i = (a_{i1} \ a_{i2} \ \dots \ a_{in})$ is a row vector.

Operation 1: to interchange the *i*th row with the *j*th row:

Operation 2: to multiply the *i*th row by $r \neq 0$:

Operation 3: to add the *i*th row multiplied by *r* to the *j*th row:

Theorem Any elementary row operation can be simulated as left multiplication by a certain matrix. *Examples.*

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ 2b_1 & 2b_2 & 2b_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

Elementary matrices

To obtain the matrix EA from A, interchange the *i*th row with the *j*th row. To obtain AE from A, interchange the *i*th column with the *j*th column.

Elementary matrices

To obtain the matrix EA from A, multiply the *i*th row by r. To obtain the matrix AE from A, multiply the *i*th column by r.

Elementary matrices

To obtain the matrix EA from A, add r times the *i*th row to the *j*th row. To obtain the matrix AE from A, add r times the *j*th column to the *i*th column.

Notice that the elementary matrix E_{σ} simulating an elementary row operation σ is obtained by applying σ to the identity matrix. In particular, this implies that E_{σ} is unique.

Theorem Any elementary row operation σ_1 can be undone by applying another elementary row operation σ_2 . Moreover, the operation σ_1 will undo the operation σ_2 .

Corollary Elementary matrices are invertible.

Proof: Let *E* be an elementary matrix simulating an elementary row operation σ . Let τ be the operation such that σ and τ undo each other. The operation τ is simulated as left multiplication by some matrix E_0 . Then $E_0EA = EE_0A = A$ for any matrix *A*. When A = I, we get $E_0E = EE_0 = I$.