MATH 423
 Linear Algebra II

Lecture 14:
General linear equations. Elementary matrices.

General linear equations

Definition. A linear equation is an equation of the form

$$
L(\mathbf{x})=\mathbf{b}
$$

where $L: V \rightarrow W$ is a linear mapping, \mathbf{b} is a given vector from W, and \mathbf{x} is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x})=\mathbf{b}$ has a solution.
The null-space of L is the solution set of the homogeneous linear equation $L(\mathbf{x})=\mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable and $\operatorname{dim} \mathcal{N}(L)<\infty$, then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for the null-space $\mathcal{N}(L)$, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Example. $\left\{\begin{array}{l}x+y+z=4, \\ x+2 y=3 .\end{array}\right.$
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Linear equation: $L(\mathbf{x})=\mathbf{b}$, where $\mathbf{b}=\binom{4}{3}$.
$\left\{\begin{array}{l}x+y+z=4 \\ x+2 y=3\end{array} \Longleftrightarrow\left\{\begin{array}{l}x+y+z=4 \\ y-z=-1\end{array}\right.\right.$
$\Longleftrightarrow\left\{\begin{array}{l}x+2 z=5 \\ y-z=-1\end{array} \Longleftrightarrow\left\{\begin{array}{l}x=5-2 z \\ y=-1+z\end{array}\right.\right.$

$$
(x, y, z)=(5-2 t,-1+t, t)=(5,-1,0)+t(-2,1,1) .
$$

Example. $u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=e^{2 x}$.
Linear operator $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L u=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$. Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
According to the theory of differential equations, the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=g(x), \quad x \in \mathbb{R}, \\
u(a)=b_{0}, \\
u^{\prime}(a)=b_{1}, \\
u^{\prime \prime}(a)=b_{2}
\end{array}\right.
$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_{0}, b_{1}, b_{2} \in \mathbb{R}$. It follows that $L\left(C^{3}(\mathbb{R})\right)=C(\mathbb{R})$.
Also, the initial data evaluation $I(u)=\left(u(a), u^{\prime}(a), u^{\prime \prime}(a)\right)$, which is a linear mapping $I: C^{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$, is one-to-one and onto when restricted to $\mathcal{N}(L)$. Hence $\operatorname{dim} \mathcal{N}(L)=3$.
It is easy to check that $L\left(x e^{x}\right)=L\left(e^{x}\right)=L(1)=0$. One can also show that $x e^{x}, e^{x}$, and 1 are linearly independent.

Example. $u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=e^{2 x}$.
Linear operator $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R})$,
$L u=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$.
Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
It follows from the previous slide that functions $x e^{x}$, e^{x} and 1 form a basis for the null-space of L. It remains to find a particular solution.
$L\left(e^{2 x}\right)=8 e^{2 x}-2\left(4 e^{2 x}\right)+2 e^{2 x}=2 e^{2 x}$.
Since L is a linear operator, $L\left(\frac{1}{2} e^{2 x}\right)=e^{2 x}$.
Particular solution: $u_{0}(x)=\frac{1}{2} e^{2 x}$.
Thus the general solution is

$$
u(x)=\frac{1}{2} e^{2 x}+t_{1} x e^{x}+t_{2} e^{x}+t_{3} .
$$

Elementary row operations for matrices:

(1) to interchange two rows;
(2) to multiply a row by a nonzero scalar;
(3) to add the ith row multiplied by some scalar r to the jth row.

Remark. Rows are added and multiplied by scalars as vectors (namely, row vectors).

Similarly, we define three types of elementary column operations.

Elementary row operations

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\hline a_{21} & a_{22} & \ldots & a_{2 n} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right),
$$

where $\mathbf{v}_{i}=\left(\begin{array}{llll}a_{i 1} & a_{i 2} & \ldots & a_{i n}\end{array}\right)$ is a row vector.

Elementary row operations

Operation 1: to interchange the ith row with the jth row:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{j} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{j} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

Elementary row operations

Operation 2: to multiply the i th row by $r \neq 0$:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
r \mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

Elementary row operations

Operation 3: to add the ith row multiplied by r to the j th row:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{j} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{j}+r \mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

Theorem Any elementary row operation can be simulated as left multiplication by a certain matrix.

Examples.

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
a_{1} & a_{2} & a_{3} \\
2 b_{1} & 2 b_{2} & 2 b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+3 a_{1} & b_{2}+3 a_{2} & b_{3}+3 a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\\
\\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
\end{gathered}
$$

Elementary matrices

$$
E=\left(\begin{array}{ccccccc}
1 & & & & & 0 & \\
& \ddots & & & & & \\
& & 0 & \cdots & 1 & & \\
& & \vdots & \ddots & \vdots & & \\
& & 1 & \cdots & 0 & & \\
& 0 & & & & \ddots & \\
& & & & & 1
\end{array}\right) \quad \text { row } \# i
$$

To obtain the matrix $E A$ from A, interchange the i th row with the j th row. To obtain $A E$ from A, interchange the i th column with the j th column.

Elementary matrices

$$
E=\left(\begin{array}{lllllll}
1 & & & & & & \\
& \ddots & & & & O & \\
& & 1 & & & & \\
& & & r & & & \\
& 0 & & & 1 & & \\
& & & & & 1
\end{array}\right) \text { row } \# i
$$

To obtain the matrix $E A$ from A, multiply the i th row by r. To obtain the matrix $A E$ from A, multiply the i th column by r.

Elementary matrices

$$
E=\left(\begin{array}{cccccc}
1 & & & & & \\
\vdots & \ddots & & & & O \\
0 & \cdots & 1 & & & \\
\vdots & & \vdots & \ddots & & \\
0 & \cdots & r & \cdots & 1 &
\end{array} \quad \text { row } \# i\right.
$$

To obtain the matrix $E A$ from A, add r times the i th row to the j th row. To obtain the matrix $A E$ from A, add r times the j th column to the i th column.

Notice that the elementary matrix E_{σ} simulating an elementary row operation σ is obtained by applying σ to the identity matrix. In particular, this implies that E_{σ} is unique.

Theorem Any elementary row operation σ_{1} can be undone by applying another elementary row operation σ_{2}. Moreover, the operation σ_{1} will undo the operation σ_{2}.

Corollary Elementary matrices are invertible.
Proof: Let E be an elementary matrix simulating an elementary row operation σ. Let τ be the operation such that σ and τ undo each other. The operation τ is simulated as left multiplication by some matrix E_{0}. Then $E_{0} E A=E E_{0} A=A$ for any matrix A. When $A=I$, we get $E_{0} E=E E_{0}=I$.

