MATH 423
 Linear Algebra II

Lecture 15:
Inverse matrix (continued). Transpose of a matrix.

Elementary row operations for matrices:

(1) to interchange two rows;
(2) to multiply a row by a nonzero scalar;
(3) to add the ith row multiplied by some scalar r to the jth row.
Similarly, we define three types of elementary column operations.

- Any elementary row operation σ on matrices with n rows
can be simulated as left multiplication by a certain $n \times n$ matrix E_{σ} (called elementary).
- The elementary matrix E_{σ} is obtained by applying the operation σ to the identity matrix.
- Any elementary column operation can be simulated as right multiplication by a certain elementary matrix.
- Elementary matrices are invertible.

General results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are column vectors).

Theorem 2 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I \Longleftrightarrow B=A^{-1} .
$$

Theorem 3 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix. Then A is invertible. Moreover, the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Theorem 1 Given an $n \times n$ matrix A, the following are equivalent: (i) A is invertible; (ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$.
Proof: (i) \Longrightarrow (ii) Assume A is invertible. Take any column vector \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$. Then $A^{-1}(A \mathbf{x})=A^{-1} \mathbf{0}$. We have $A^{-1}(A \mathbf{x})=\left(A^{-1} A\right) \mathbf{x}=I \mathbf{x}=\mathbf{x}$ and $A^{-1} \mathbf{0}=\mathbf{0}$. Hence $\mathbf{x}=\mathbf{0}$.
(ii) \Longrightarrow (i) Assume $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$. Consider a linear operator $L_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ given by $L_{A}(\mathbf{x})=A \mathbf{x}$. By assumption, the null-space $\mathcal{N}\left(L_{A}\right)$ is trivial. It follows that L_{A} is one-to-one. By the Dimension Theorem, $\operatorname{dim} \mathcal{R}\left(L_{A}\right)+\operatorname{dim} \mathcal{N}\left(L_{A}\right)=\operatorname{dim} \mathbb{F}^{n}=n$. Then $\operatorname{dim} \mathcal{R}\left(L_{A}\right)=n$, which implies that $\mathcal{R}\left(L_{A}\right)=\mathbb{F}^{n}$. That is, L_{A} is onto. Thus L_{A} is an invertible mapping.

The inverse L_{A}^{-1} is also linear. Hence $L_{A}^{-1}(\mathbf{x})=B \mathbf{x}$ for some $n \times n$ matrix B and any column vector $\mathbf{x} \in \mathbb{F}^{n}$. Clearly, $L_{A}^{-1}\left(L_{A}(\mathbf{x})\right)=\mathbf{x}=L_{A}\left(L_{A}^{-1}(\mathbf{x})\right)$, i.e., $B A \mathbf{x}=\mathbf{x}=A B \mathbf{x}$, for all x. It follows that $B A=I=A B$. Thus $B=A^{-1}$.

Theorem 2 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I \Longleftrightarrow B=A^{-1}
$$

Proof: $\left[B A=I \Longrightarrow B=A^{-1}\right]$ Assume $B A=I$. Take any column vector \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$. Then $B(A \mathbf{x})=B \mathbf{0}$. We have $B(A \mathbf{x})=(B A) \mathbf{x}=l \mathbf{x}=\mathbf{x}$ and $B \mathbf{0}=\mathbf{0}$. Hence $\mathbf{x}=\mathbf{0}$. By Theorem $1, A$ is invertible. Then $B A=I \Longrightarrow(B A) A^{-1}=I A^{-1}$ $\Longrightarrow B=A^{-1}$.
$\left[A B=I \Longrightarrow B=A^{-1}\right]$ Assume $A B=I$. By the above B is invertible and $A=B^{-1}$. The latter is equivalent to $B=A^{-1}$.

Proof of Theorem 3

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then

$$
E_{k} E_{k-1} \ldots E_{2} E_{1} A=I
$$

where $E_{1}, E_{2}, \ldots, E_{k}$ are elementary matrices simulating those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$
B=E_{k} E_{k-1} \ldots E_{2} E_{1} I=E_{k} E_{k-1} \ldots E_{2} E_{1} .
$$

Thus $B A=I$, which, by Theorem 2, implies that $B=A^{-1}$.

Let V denote the set of all solutions of a differential equation $u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=0, \quad x \in \mathbb{R}$.
The set V is a subspace of $C^{3}(\mathbb{R})$ since it is the null-space of a linear diffrential oprator $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R})$ given by $L u=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$.

According to the theory of differential equations, the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=0, \quad x \in \mathbb{R}, \\
u(0)=b_{0}, \\
u^{\prime}(0)=b_{1}, \\
u^{\prime \prime}(0)=b_{2}
\end{array}\right.
$$

has a unique solution for any $b_{0}, b_{1}, b_{2} \in \mathbb{R}$. In other words, a linear mapping $J: V \rightarrow \mathbb{R}^{3}$, given by
$J(u)=\left(u(0), u^{\prime}(0), u^{\prime \prime}(0)\right)$, is one-to-one and onto, i.e., invertible.
Problem. Find the inverse transformation J^{-1}.

We know from the previous lecture that functions $u_{1}(x)=1, u_{2}(x)=e^{x}$, and $u_{3}(x)=x e^{x}$ form a basis for V. Let α denote this basis and β denote the standard basis for \mathbb{R}^{3}. We are going to find the matrix $[J]_{\alpha}^{\beta}$.
$u_{1}^{\prime}(x)=u_{1}^{\prime \prime}(x)=0, \quad u_{2}^{\prime}(x)=u_{2}^{\prime \prime}(x)=e^{x}$,
$u_{3}^{\prime}(x)=x e^{x}+e^{x}, \quad u_{3}^{\prime \prime}(x)=x e^{x}+2 e^{x}$.
$[J]_{\alpha}^{\beta}=\left(\begin{array}{lll}u_{1}(0) & u_{2}(0) & u_{3}(0) \\ u_{1}^{\prime}(0) & u_{2}^{\prime}(0) & u_{3}^{\prime}(0) \\ u_{1}^{\prime \prime}(0) & u_{2}^{\prime \prime}(0) & u_{3}^{\prime \prime}(0)\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$.
Let $A=[J]_{\alpha}^{\beta}$. Then the matrix $\left[J^{-1}\right]_{\beta}^{\alpha}$ is A^{-1}.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$ and apply elementary row operations to this new matrix. The goal is to get a matrix of the form $(I \mid B)$, then $B=A^{-1}$.
$A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2\end{array}\right), \quad I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{lll|lll}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{lll|lll}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1\end{array}\right) \rightarrow$
$\left(\begin{array}{rrr|rrr}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrr|rrr}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right)=\left(I \mid A^{-1}\right)$.
It follows that $J^{-1}\left(\mathbf{e}_{1}\right)=u_{1}, J^{-1}\left(\mathbf{e}_{2}\right)=-2 u_{1}+2 u_{2}-u_{3}$,
$J^{-1}\left(\mathbf{e}_{3}\right)=u_{1}-u_{2}+u_{3}$.
For any vector $\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$ we have $J^{-1}\left(y_{1}, y_{2}, y_{3}\right)=f$, where $f=y_{1} u_{1}+y_{2}\left(-2 u_{1}+2 u_{2}-u_{3}\right)+y_{3}\left(u_{1}-u_{2}+u_{3}\right)$ so that $f(x)=\left(y_{1}-2 y_{2}+y_{3}\right)+\left(2 y_{2}-y_{3}\right) e^{x}+\left(-y_{2}+y_{3}\right) x e^{x}$.

Transpose of a matrix

Definition. Given a matrix A, the transpose of A, denoted A^{t}, is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A=\left(a_{i j}\right)$ then $A^{t}=\left(b_{i j}\right)$, where $b_{i j}=a_{j i}$.

Examples. $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)^{t}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$,

$$
\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right)^{t}=(7,8,9), \quad\left(\begin{array}{ll}
4 & 7 \\
7 & 0
\end{array}\right)^{t}=\left(\begin{array}{ll}
4 & 7 \\
7 & 0
\end{array}\right)
$$

Properties of transposes:

- $\left(A^{t}\right)^{t}=A$
- $(A+B)^{t}=A^{t}+B^{t}$
- $(r A)^{t}=r A^{t}$
- $(A B)^{t}=B^{t} A^{t}$
- $\left(A_{1} A_{2} \ldots A_{k}\right)^{t}=A_{k}^{t} \ldots A_{2}^{t} A_{1}^{t}$
- $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$

