MATH 423 Linear Algebra II

Lecture 15: Inverse matrix (continued). Transpose of a matrix.

Elementary row operations for matrices:

- (1) to interchange two rows;
- (2) to multiply a row by a nonzero scalar;
- (3) to add the *i*th row multiplied by some scalar r to the *j*th row.

Similarly, we define three types of **elementary column operations**.

• Any elementary row operation σ on matrices with *n* rows can be simulated as left multiplication by a certain $n \times n$ matrix E_{σ} (called **elementary**).

• The elementary matrix E_{σ} is obtained by applying the operation σ to the identity matrix.

• Any elementary column operation can be simulated as right multiplication by a certain elementary matrix.

• Elementary matrices are invertible.

General results on inverse matrices

Theorem 1 Given a square matrix *A*, the following are equivalent:

(i) A is invertible;

(ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are column vectors).

Theorem 2 For any $n \times n$ matrices A and B, $BA = I \iff AB = I \iff B = A^{-1}$.

Theorem 3 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix. Then A is invertible. Moreover, the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 1 Given an $n \times n$ matrix A, the following are equivalent: (i) A is invertible; (ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$.

Proof: (i) \implies (ii) Assume *A* is invertible. Take any column vector **x** such that $A\mathbf{x} = \mathbf{0}$. Then $A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0}$. We have $A^{-1}(A\mathbf{x}) = (A^{-1}A)\mathbf{x} = I\mathbf{x} = \mathbf{x}$ and $A^{-1}\mathbf{0} = \mathbf{0}$. Hence $\mathbf{x} = \mathbf{0}$.

(ii) \Longrightarrow (i) Assume $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$. Consider a linear operator $L_A : \mathbb{F}^n \to \mathbb{F}^n$ given by $L_A(\mathbf{x}) = A\mathbf{x}$. By assumption, the null-space $\mathcal{N}(L_A)$ is trivial. It follows that L_A is one-to-one. By the Dimension Theorem, dim $\mathcal{R}(L_A) + \dim \mathcal{N}(L_A) = \dim \mathbb{F}^n = n$. Then dim $\mathcal{R}(L_A) = n$, which implies that $\mathcal{R}(L_A) = \mathbb{F}^n$. That is, L_A is onto. Thus L_A is an invertible mapping.

The inverse L_A^{-1} is also linear. Hence $L_A^{-1}(\mathbf{x}) = B\mathbf{x}$ for some $n \times n$ matrix B and any column vector $\mathbf{x} \in \mathbb{F}^n$. Clearly, $L_A^{-1}(L_A(\mathbf{x})) = \mathbf{x} = L_A(L_A^{-1}(\mathbf{x}))$, i.e., $BA\mathbf{x} = \mathbf{x} = AB\mathbf{x}$, for all \mathbf{x} . It follows that BA = I = AB. Thus $B = A^{-1}$. **Theorem 2** For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I \iff B = A^{-1}.$$

Proof: $[BA = I \implies B = A^{-1}]$ Assume BA = I. Take any column vector **x** such that $A\mathbf{x} = \mathbf{0}$. Then $B(A\mathbf{x}) = B\mathbf{0}$. We have $B(A\mathbf{x}) = (BA)\mathbf{x} = I\mathbf{x} = \mathbf{x}$ and $B\mathbf{0} = \mathbf{0}$. Hence $\mathbf{x} = \mathbf{0}$. By Theorem 1, *A* is invertible. Then $BA = I \implies (BA)A^{-1} = IA^{-1}$ $\implies B = A^{-1}$.

 $[AB = I \implies B = A^{-1}]$ Assume AB = I. By the above *B* is invertible and $A = B^{-1}$. The latter is equivalent to $B = A^{-1}$.

Proof of Theorem 3

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then

$$E_k E_{k-1} \ldots E_2 E_1 A = I,$$

where E_1, E_2, \ldots, E_k are elementary matrices simulating those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$B = E_k E_{k-1} \dots E_2 E_1 I = E_k E_{k-1} \dots E_2 E_1.$$

Thus BA = I, which, by Theorem 2, implies that $B = A^{-1}$.

Let V denote the set of all solutions of a differential equation u'''(x) - 2u''(x) + u'(x) = 0, $x \in \mathbb{R}$.

The set V is a subspace of $C^3(\mathbb{R})$ since it is the null-space of a linear diffrential oprator $L: C^3(\mathbb{R}) \to C(\mathbb{R})$ given by Lu = u''' - 2u'' + u'.

According to the theory of differential equations, the initial value problem

$$\left\{ egin{array}{ll} u'''(x)-2u''(x)+u'(x)=0, & x\in \mathbb{R}, \ u(0)=b_0, & u'(0)=b_1, & u''(0)=b_2 \end{array}
ight.$$

has a unique solution for any $b_0, b_1, b_2 \in \mathbb{R}$. In other words, a linear mapping $J: V \to \mathbb{R}^3$, given by J(u) = (u(0), u'(0), u''(0)), is one-to-one and onto, i.e., invertible.

Problem. Find the inverse transformation J^{-1} .

We know from the previous lecture that functions $u_1(x) = 1$, $u_2(x) = e^x$, and $u_3(x) = xe^x$ form a basis for V. Let α denote this basis and β denote the standard basis for \mathbb{R}^3 . We are going to find the matrix $[J]^{\beta}_{\alpha}$.

$$u_1'(x) = u_1''(x) = 0, \quad u_2'(x) = u_2''(x) = e^x, u_3'(x) = xe^x + e^x, \quad u_3''(x) = xe^x + 2e^x. [J]_{\alpha}^{\beta} = \begin{pmatrix} u_1(0) & u_2(0) & u_3(0) \\ u_1'(0) & u_2'(0) & u_3'(0) \\ u_1''(0) & u_2''(0) & u_3''(0) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Let $A = [J]^{\beta}_{\alpha}$. Then the matrix $[J^{-1}]^{\alpha}_{\beta}$ is A^{-1} .

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix (A | I) and apply elementary row operations to this new matrix. The goal is to get a matrix of the form (I | B), then $B = A^{-1}$.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(A \mid I) = \begin{pmatrix} 1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 1 & 2 \mid 0 & 0 & 1 \end{pmatrix}$$

$$(A \mid I) = \begin{pmatrix} 1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 1 & 2 \mid 0 & 0 & 1 \end{pmatrix} \rightarrow$$
$$\begin{pmatrix} 1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 0 & 1 \mid 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 0 \mid 0 & 2 & -1 \\ 0 & 0 & 1 \mid 0 & -1 & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & 0 \mid 1 & -2 & 1 \\ 0 & 1 & 0 \mid 0 & 2 & -1 \\ 0 & 0 & 1 \mid 0 & -1 & 1 \end{pmatrix} = (I \mid A^{-1}).$$

It follows that $J^{-1}(\mathbf{e}_1) = u_1$, $J^{-1}(\mathbf{e}_2) = -2u_1 + 2u_2 - u_3$, $J^{-1}(\mathbf{e}_3) = u_1 - u_2 + u_3$.

For any vector $(y_1, y_2, y_3) \in \mathbb{R}^3$ we have $J^{-1}(y_1, y_2, y_3) = f$, where $f = y_1 u_1 + y_2(-2u_1 + 2u_2 - u_3) + y_3(u_1 - u_2 + u_3)$ so that $f(x) = (y_1 - 2y_2 + y_3) + (2y_2 - y_3)e^x + (-y_2 + y_3)xe^x$.

Transpose of a matrix

Definition. Given a matrix A, the **transpose** of A, denoted A^t , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A = (a_{ij})$ then $A^t = (b_{ij})$, where $b_{ij} = a_{ji}$.

Examples.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^{t} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
,
 $\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^{t} = (7, 8, 9), \qquad \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}^{t} = \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}$.

Properties of transposes:

•
$$(A^t)^t = A$$

- $(A+B)^t = A^t + B^t$
- $(rA)^t = rA^t$
- $(AB)^t = B^t A^t$
- $(A_1A_2\ldots A_k)^t = A_k^t\ldots A_2^tA_1^t$
- $(A^{-1})^t = (A^t)^{-1}$