
MATH 423

Linear Algebra II

Lecture 17:

Reduced row echelon form (continued).
Determinant of a matrix.



Row echelon form

A matrix is said to be in the row echelon form if the leading
entries shift to the right as we go from the first row to the last
one.
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• Leading entries are boxed;
• all the entries below the staircase line are zero;
• each step of the staircase has height 1;
• each circle marks a column without a leading entry.



Strict triangular form is a particular case of row
echelon form that can occur only for square

matrices:
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• no zero rows;

• there is a leading entry in each column.



Reduced row echelon form

A matrix is said to be in the reduced row echelon form if
(i) it is in the row echelon form (i.e., leading entries shift to
the right as we go from the first row to the last one);

(ii) each leading entry is equal to 1;
(iii) each leading entry is the only nonzero entry in its column.
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• All entries below the staircase line are zero;
• each boxed entry is 1, the other entries in its column are 0.



Theorem Any matrix can be converted into row

echelon form by applying elementary row operations.

Sketch of the proof: The proof is by induction on the number
of columns in the matrix. It relies on the next lemma.

Lemma Any matrix A can be converted to one of the
following forms using elementary row operations:

(i) O (the zero matrix); (ii) (1 a12 a13 . . . a1n);

(iii)





0
... B

0



; (iv)









1 a12 . . . a1n
0
... B

0









.

In the cases (i) and (ii), we already have a row echelon form.
In the cases (iii) and (iv), it is enough to convert the matrix B

to row echelon form. Moreover, the row reduction on the
block B can be done by applying elementary row operations to
the entire matrix.



Theorem Any matrix in row echelon form can be
converted into reduced row echelon form by

applying elementary row operations.

Example. A =









a11 0 a13 a14 0 a16
0 1 a23 a24 0 a26
0 0 0 a34 0 a36
0 0 0 0 1 a46









, a11, a34 6= 0.

The matrix A is in row echelon form. Columns #2 and #5
are RREF ready, columns #1 and #4 are not. To prepare
column #4 for RREF, we multiply row #3 by a−1

34
, then

subtract row #3 times a24 from row #2 and subtract row #3
times a14 from row #1:

A′ =









a11 0 a13 0 0 a′
16

0 1 a23 0 0 a′
26

0 0 0 1 0 a′
36

0 0 0 0 1 a46









.



Let C be a matrix in the row echelon form (resp.

reduced row echelon form). We say that C is a
row echelon form (resp. reduced row echelon

form) of a matrix A if C can be obtained from A by
applying elementary row operations.

Theorem If a matrix C is in row echelon form,

then the nonzero rows of C are linearly independent.

Corollary 1 The rank of a matrix is equal to the
number of nonzero rows in its row echelon form.

Corollary 2 If a square matrix A is invertible then

its row echelon form is also in strict triangular form.
Otherwise the row echelon form of A contains a

zero row.



Row echelon form of a square matrix:
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invertible case noninvertible case



Characterizations of invertible matrices

Theorem Given an n×n matrix A, the following conditions
are equivalent:

(i) A is invertible;
(ii) the nullity of A is 0, i.e., x = 0 is the only solution of the
matrix equation Ax = 0;
(iii) the rank of A is n;
(iv) for some n-dimensional column vector b, the matrix
equation Ax = b has a unique solution (which is x = A−1b);
(v) the matrix equation Ax = b has a unique solution for
any n-dimensional column vector b;
(vi) the row echelon form of A has no zero rows;
(vii) the reduced row echelon form of A is the identity matrix;
(viii) A is a product of elementary matrices.



Properties of reduced row echelon form

Theorem 1 For any matrix, the reduced row
echelon form exists and is unique.

Theorem 2 Suppose A and B are matrices of the
same dimensions. Then the following conditions are
equivalent:

(i) A and B share a reduced row echelon form;
(ii) A and B share a row echelon form;

(iii) A can be obtained from B by applying
elementary row operations;

(iv) A = CB for an invertible matrix C ;
(v) A and B have the same row space;
(vi) A and B have the same null-space.



How to solve a system of linear equations

• Order the variables.
• Write down the augmented matrix of the system.
• Convert the matrix to row echelon form.

• Check for consistency.
• Convert the matrix to reduced row echelon

form.
• Write down the system corresponding to the

reduced row echelon form.
• Determine leading and free variables.

• Rewrite the system so that the leading variables
are on the left while everything else is on the right.
• Assign parameters to the free variables and write

down the general solution in parametric form.



Consistency check

The original system of linear equations is consistent if there is
no leading entry in the rightmost column of the row echelon
form of the augmented matrix. This is equivalent to the
augmented matrix having the same rank as the coefficient
matrix.
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Augmented matrix of an inconsistent system



Example.

{

x2 + 2x3 + 3x4 = 6
x1 + 2x2 + 3x3 + 4x4 = 10

Variables: x1, x2, x3, x4.

Augmented matrix:

(

0 1 2 3 6
1 2 3 4 10

)

To get it into row echelon form, we exchange the two rows:
(

1 2 3 4 10
0 1 2 3 6

)

Consistency check is passed. To convert into reduced row
echelon form, add −2 times the 2nd row to the 1st row:
(

1 0 −1 −2 −2

0 1 2 3 6

)

The leading variables are x1 and x2; hence x3 and x4 are free
variables.



Back to the system:
{

x1 − x3 − 2x4 = −2
x2 + 2x3 + 3x4 = 6

⇐⇒

{

x1 = x3 + 2x4 − 2
x2 = −2x3 − 3x4 + 6

General solution:














x1 = t + 2s − 2
x2 = −2t − 3s + 6

x3 = t

x4 = s

(t, s ∈ R)

In vector form, (x1, x2, x3, x4) =
= (−2, 6, 0, 0) + t(1,−2, 1, 0) + s(2,−3, 0, 1).



Determinants

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix
A = (aij)1≤i ,j≤n is denoted detA or
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Principal property: detA 6= 0 if and only if a
system of linear equations with the coefficient

matrix A has a unique solution. Equivalently,
detA 6= 0 if and only if the matrix A is invertible.



Definition in low dimensions

Definition. det (a) = a,
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= a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32.
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