MATH 423
 Linear Algebra II

Lecture 18:
 Determinants (continued).

Determinants

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A \neq 0$ if and only if a system of linear equations with the coefficient matrix A has a unique solution. Equivalently, $\operatorname{det} A \neq 0$ if and only if the matrix A is invertible.

Definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13}

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)| $11 a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$ |
| ---: |
| $-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}$. |

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & \boxed{*} & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & \boxed{*} & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Examples: 3×3 matrices

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3 \\
& -0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=4-9=-5, \\
& \left|\begin{array}{lrr}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right|=1 \cdot 2 \cdot 3+4 \cdot 5 \cdot 0+6 \cdot 0 \cdot 0 \\
& -6 \cdot 2 \cdot 0-4 \cdot 0 \cdot 3-1 \cdot 5 \cdot 0=1 \cdot 2 \cdot 3=6 .
\end{aligned}
$$

Let us try to find a solution of a general system of 2 linear equations in 2 variables:
$\left\{\begin{array}{l}a_{11} x+a_{12} y=b_{1}, \\ a_{21} x+a_{22} y=b_{2} .\end{array}\right.$
Solve the 1st equation for $x: x=\left(b_{1}-a_{12} y\right) / a_{11}$. Substitute into the 2nd equation:

$$
a_{21}\left(b_{1}-a_{12} y\right) / a_{11}+a_{22} y=b_{2}
$$

Solve for $y: y=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}}$.
Back substitution: $x=\left(b_{1}-a_{12} y\right) / a_{11}=\frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{12} a_{21}}$.
Thus

$$
x=\frac{\left|\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|} .
$$

General definition

The general definition of the determinant is quite complicated as there is no simple explicit formula.

There are several approaches to defining determinants.
Approach 1 (original): an explicit (but very complicated) formula.
Approach 2 (axiomatic): we formulate properties that the determinant should have.
Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times(n-1)$ matrices.

Original definition of determinant

Definition. If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix then

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} a_{2, \pi(2)} \ldots a_{n, \pi(n)}
$$

where π runs over S_{n}, the set of all permutations of $\{1,2, \ldots, n\}$, and $\operatorname{sgn}(\pi)$ denotes the sign of the permutation π.

Remarks. - A permutation of the set $\{1,2, \ldots, n\}$ is an invertible mapping of this set onto itself. There are $n!$ such mappings.

- The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ can be 1 or -1 . Its definition is rather complicated.
$\mathcal{M}_{n, n}(\mathbb{F})$: the set of $n \times n$ matrices with entries in \mathbb{F}.
Theorem There exists a unique function $\operatorname{det}: \mathcal{M}_{n, n}(\mathbb{F}) \rightarrow \mathbb{F}$ (called the determinant) with the following properties:
(D1) if we interchange two rows of a matrix, the determinant changes its sign;
(D2) if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
(D3) if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
(D4) $\operatorname{det} I=1$.

Corollary 1 Suppose A is a square matrix and B is obtained from A applying elementary row operations. Then $\operatorname{det} A=0$ if and only if $\operatorname{det} B=0$.

Corollary $2 \operatorname{det} B=0$ whenever the matrix B has a zero row.

Hint: Multiply the zero row by the zero scalar.
Corollary $3 \operatorname{det} A=0$ if and only if the matrix A is not invertible.

Idea of the proof: Let B be the reduced row echelon form of A. If A is invertible then $B=I$; otherwise B has a zero row.

Remark. The same argument proves that properties (D1)-(D4) are enough to compute any determinant.

Row echelon form of a square matrix A :

$\operatorname{det} A \neq 0$

$\operatorname{det} A=0$

Other properties of determinants

- If a matrix A has two identical rows then $\operatorname{det} A=0$.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
0 & 0 & 0
\end{array}\right|=0
$$

- If a matrix A has two proportional rows then $\operatorname{det} A=0$.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
r a_{1} & r a_{2} & r a_{3}
\end{array}\right|=r\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=0
$$

- If the rows of A are linearly dependent then $\operatorname{det} A=0$ (as in this case A is not invertible).

Definition. A square matrix $A=\left(a_{i j}\right)$ is called diagonal if all entries off the main diagonal are zeros: $a_{i j}=0$ whenever $i \neq j$. The matrix A is called upper triangular if all entries below the main diagonal are zeros: $a_{i j}=0$ whenever $i>j$.

- If A is a diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$ then $\operatorname{det} A=d_{1} d_{2} \ldots d_{n}$.
- The determinant of an upper triangular matrix is equal to the product of its diagonal entries.

$$
\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right|=a_{11} a_{22} a_{33}
$$

Additive law for rows

- Suppose that matrices X, Y, Z are identical except for the i th row and the i th row of Z is the sum of the i th rows of X and Y.

Then $\operatorname{det} Z=\operatorname{det} X+\operatorname{det} Y$.

$$
\left|\begin{array}{ccc}
a_{1}+a_{1}^{\prime} & a_{2}+a_{2}^{\prime} & a_{3}+a_{3}^{\prime} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Together with property (D2), this means that the determinant depends linearly on each row of a matrix.

Submatrices

Definition. Given a matrix A, a $k \times k$ submatrix of A is a matrix obtained by specifying k columns and k rows of A and deleting the other columns and rows.

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
10 & 20 & 30 & 40 \\
3 & 5 & 7 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* & 2 & * & 4 \\
* & * & * & * \\
* & 5 & * & 9
\end{array}\right) \rightarrow\left(\begin{array}{ll}
2 & 4 \\
5 & 9
\end{array}\right)
$$

Theorem Suppose A is a matrix of rank m. Then A admits a $k \times k$ submatrix with nonzero determinant if and only if $0<k \leq m$.

Row and column expansions

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A.

Theorem For any $1 \leq k, m \leq n$ we have that

$$
\begin{gathered}
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}, \\
\text { (expansion by } k t h \text { row) }
\end{gathered}
$$

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} M_{i m}
$$

(expansion by mth column)

Signs for row/column expansions

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 1st row:

$$
\left(\begin{array}{ccc}
1 & * & * \\
* & 5 & 6 \\
* & 8 & 9
\end{array}\right)\left(\begin{array}{ccc}
* & 2 & * \\
4 & * & 6 \\
7 & * & 9
\end{array}\right)\left(\begin{array}{ccc}
* & * & 3 \\
4 & 5 & * \\
7 & 8 & *
\end{array}\right)
$$

$\operatorname{det} A=1\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+3\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|$
$=(5 \cdot 9-6 \cdot 8)-2(4 \cdot 9-6 \cdot 7)+3(4 \cdot 8-5 \cdot 7)=0$.

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 2nd column:
$\left(\begin{array}{lll}* & 2 & * \\ 4 & * & 6 \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ * & 5 & * \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ 4 & * & 6 \\ * & 8 & *\end{array}\right)$
$\operatorname{det} A=-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+5\left|\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right|-8\left|\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}\right|$
$=-2(4 \cdot 9-6 \cdot 7)+5(1 \cdot 9-3 \cdot 7)-8(1 \cdot 6-3 \cdot 4)=0$.

Example. $\quad A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Subtract the 1st row from the 2nd row and from the 3 rd row:

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
6 & 6 & 6
\end{array}\right|=0
$$

since the last matrix has two proportional rows.

