MATH 423
 Linear Algebra II

Lecture 19:

More on determinants.

Determinants: definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\begin{array}{r}
\\
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .
\end{array}
$$

$$
+:\left(\begin{array}{ccc}
\boxed{*} & * & * \\
* & * & * \\
* & * & *
\end{array}\right),\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* * & * & *
\end{array}\right),\left(\begin{array}{ccc}
* & * & * \\
* * & * & * \\
* & * & *
\end{array}\right) .
$$

$$
-:\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right),\left(\begin{array}{ccc}
* & * & * \\
* * & * & * \\
* & * & *
\end{array}\right),\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) .
$$

Properties of determinants

Determinants and elementary row operations:

- if we interchange two rows of a matrix, the determinant changes its sign;
- if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
- if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same.

Properties of determinants

Tests for non-invertibility:

- if a matrix A has a zero row then $\operatorname{det} A=0$;
- if a matrix A has two identical rows then $\operatorname{det} A=0$;
- if a matrix A has two proportional rows then $\operatorname{det} A=0$;
- if the rows of a matrix A are linearly dependent vectors then $\operatorname{det} A=0$.

Properties of determinants

Special matrices:

- $\operatorname{det} l=1$;
- the determinant of a diagonal matrix is equal to the product of its diagonal entries;
- the determinant of an upper triangular matrix is equal to the product of its diagonal entries.

Characterization of determinants

Theorem 1 The determinant is the only function on $\mathcal{M}_{n, n}(\mathbb{F})$ with the following properties:

- it changes the sign when we interchange two rows of a matrix;
- it is multiplied by a scalar r when a row of a matrix is multiplied by r;
- it is not changed when we add a row of a matrix multiplied by a scalar to another row;
- it takes the value 1 at the identity matrix.

Theorem 2 The determinant is the only function on $\mathcal{M}_{n, n}(\mathbb{F})$ with the following properties:

- it depends linearly on each row of a matrix;
- it takes the value 0 at any matrix with two identical rows;
- it takes the value 1 at the identity matrix.

Row and column expansions

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A.

Theorem For any $1 \leq k, m \leq n$ we have that

$$
\begin{gathered}
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}, \\
(\text { expansion by } k \text { th row })
\end{gathered}
$$

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} M_{i m}
$$

(expansion by mth column)

Signs for row/column expansions

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Evaluation of determinants

Example. $\quad B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13\end{array}\right)$.
First let's do some row reduction.
Add -4 times the 1 st row to the 2 nd row:

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|
$$

Add -7 times the 1st row to the 3rd row:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

Expand the determinant by the 1st column:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|=1\left|\begin{array}{rr}
-3 & -6 \\
-6 & -8
\end{array}\right|
$$

Thus

$$
\begin{gathered}
\operatorname{det} B=\left|\begin{array}{ll}
-3 & -6 \\
-6 & -8
\end{array}\right|=(-3)\left|\begin{array}{rr}
1 & 2 \\
-6 & -8
\end{array}\right| \\
=(-3)(-2)\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=(-3)(-2)(-2)=-12 .
\end{gathered}
$$

Example. $C=\left(\begin{array}{rrrr}2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1\end{array}\right), \operatorname{det} C=$?
Expand the determinant by the 3rd column:

$$
\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Add -2 times the 2 nd row to the 1 st row:

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Expand the determinant by the 1st row:

$$
\operatorname{det} C=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2 \cdot 9\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|
$$

Thus

$$
\operatorname{det} C=-18\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|=-18 \cdot 2=-36
$$

More properties of determinants

Determinants and matrix multiplication:

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B ;
$$

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det}(B A) ;
$$

- if A is an invertible matrix then

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}
$$

Determinants and scalar multiplication:

- if A is an $n \times n$ matrix and $r \in \mathbb{F}$ then

$$
\operatorname{det}(r A)=r^{n} \operatorname{det} A
$$

Theorem $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$ for any $n \times n$ matrices A and B.

Proof: First we consider a special case when $A=E_{\sigma}$ is an elementary matrix corresponding to an elementary row operation σ. It is easy to observe that $\operatorname{det}\left(E_{\sigma} B\right)=r_{\sigma} \operatorname{det} B$ for some scalar r_{σ} depending only on σ. For $B=I$, we get $\operatorname{det} E_{\sigma}=r_{\sigma} \operatorname{det} I=r_{\sigma}$. Hence $\operatorname{det}\left(E_{\sigma} B\right)=\left(\operatorname{det} E_{\sigma}\right)(\operatorname{det} B)$.
Now it follows by induction that

$$
\operatorname{det}\left(E_{k} E_{k-1} \ldots E_{2} E_{1} B\right)=\left(\operatorname{det} E_{k}\right) \ldots\left(\operatorname{det} E_{2}\right)\left(\operatorname{det} E_{1}\right)(\operatorname{det} B)
$$

for any elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ and any B.
Again, for $B=l$ we get

$$
\operatorname{det}\left(E_{k} E_{k-1} \ldots E_{2} E_{1}\right)=\left(\operatorname{det} E_{k}\right) \ldots\left(\operatorname{det} E_{2}\right)\left(\operatorname{det} E_{1}\right) .
$$

Therefore $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$ whenever A is a product of elementary matrices. That is, whenever A is invertible. It remains to consider the case when A is not invertible. In this case, $\operatorname{rank}(A)<n$. Then $\operatorname{rank}(A B) \leq \operatorname{rank}(A)<n$ so that $A B$ is not invertible too. Thus $\operatorname{det}(A B)=\operatorname{det} A=0$.

Determinant of the transpose

Theorem $\operatorname{det} A^{t}=\operatorname{det} A$ for any square matrix A.
Proof: First we consider a special case when $A=E_{\sigma}$, an elementary matrix associated to an elementary row operation σ. If σ exchanges two rows or multiplies a row by a scalar then $E_{\sigma}^{t}=E_{\sigma}$. If σ adds a scalar multiple of one row to another row, then E_{σ}^{t} is also an elementary matrix associated to an operation of the same type. Hence $\operatorname{det} E_{\sigma}^{t}=\operatorname{det} E_{\sigma}=1$. Now consider the case when A is invertible. In this case A is a product of elementary matrices, $A=E_{k} \ldots E_{2} E_{1}$. Then $A^{t}=E_{1}^{t} E_{2}^{t} \ldots E_{k}^{t}$. We have $\operatorname{det} A=\left(\operatorname{det} E_{k}\right) \ldots\left(\operatorname{det} E_{2}\right)\left(\operatorname{det} E_{1}\right)$, $\operatorname{det} A^{t}=\left(\operatorname{det} E_{1}^{t}\right)\left(\operatorname{det} E_{2}^{t}\right) \ldots\left(\operatorname{det} E_{k}^{t}\right)$. Since $\operatorname{det} E_{i}^{t}=\operatorname{det} E_{i}$ for all i, we obtain $\operatorname{det} A^{t}=\operatorname{det} A$.
It remains to consider the case when A is not invertible. Since $\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}(A)$, the transpose A^{t} is not invertible too. Thus in this case $\operatorname{det} A^{t}=\operatorname{det} A=0$.

Columns vs. rows

Since $\operatorname{det} A^{t}=\operatorname{det} A$, for every property of determinants involving rows of a matrix there is an analogous property involving columns of a matrix.

- If one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar.
- Interchanging two columns of a matrix changes the sign of its determinant.
- If a matrix A has two proportional columns then $\operatorname{det} A=0$.
- Adding a scalar multiple of one column to another does not change the determinant of a matrix.

Determinants and the inverse matrix

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A. The cofactor matrix of A is an $n \times n$ matrix $\widetilde{A}=\left(\alpha_{i j}\right)$ defined by $\alpha_{i j}=(-1)^{i+j} \operatorname{det} M_{i j}$.
Theorem $\tilde{A}^{t} A=A \widetilde{A}^{t}=(\operatorname{det} A) I$.
Sketch of the proof: $\quad \widetilde{A}^{t}=(\operatorname{det} A) I$ means that

$$
\begin{aligned}
& \sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}=\operatorname{det} A \quad \text { for all } k, \\
& \sum_{j=1}^{n}(-1)^{k+j} a_{m j} \operatorname{det} M_{k j}=0 \quad \text { for } m \neq k
\end{aligned}
$$

Indeed, the 1 st equality is the expansion of $\operatorname{det} A$ by the k th row. The 2 nd equality is an analogous expansion of $\operatorname{det} B$, where the matrix B is obtained from A by replacing its k th row with a copy of the m th row (clearly, $\operatorname{det} B=0$).
$\tilde{A}^{t} A=(\operatorname{det} A) I$ is verified similarly, using column expansions.
Corollary If $\operatorname{det} A \neq 0$ then $A^{-1}=(\operatorname{det} A)^{-1} \widetilde{A}^{t}$.

