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Linear Algebra II

Lecture 20:

Geometry of linear transformations.

Eigenvalues and eigenvectors.

Characteristic polynomial.



Geometric properties of determinants

• 2×2 determinants and plane geometry
Let P be a parallelogram in the plane R

2. Suppose that
vectors v1, v2 ∈ R

2 are represented by adjacent sides of P .
Then area(P) = |det A|, where A = (v1, v2), a matrix whose
columns are v1 and v2.

Consider a linear operator LA : R
2 → R

2 given by
LA(v) = Av for any column vector v. Then
area(LA(D)) = |det A| area(D) for any bounded domain D.

• 3×3 determinants and space geometry
Let Π be a parallelepiped in space R

3. Suppose that vectors
v1, v2, v3 ∈ R

3 are represented by adjacent edges of Π. Then
volume(Π) = |det B|, where B = (v1, v2, v3), a matrix whose
columns are v1, v2, and v3.

Similarly, volume(LB(D)) = |det B| volume(D) for any
bounded domain D ⊂ R

3.



v1

v2

v3

volume(Π) = |det B|, where B = (v1, v2, v3). Note that the
parallelepiped Π is the image under LB of a unit cube whose
adjacent edges are e1, e2, e3.

The triple v1, v2, v3 obeys the right-hand rule. We say that
LB preserves orientation if it preserves the hand rule for any
basis. This is the case if and only if det B > 0.



Linear transformations of R
2

Any linear operator L : R
2 → R

2 is represented as
multiplication of a 2-dimensional column vector by a
2×2 matrix: L(x) = Ax or

L

(

x

y

)

=

(

a b

c d

)(

x

y

)

.

Linear transformations corresponding to particular
matrices can have various geometric properties.
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Texture Reflection about
the line x − y = 0
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Vertical projection on
the horizontal axis
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Horizontal projection
on the line x + y = 0
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Eigenvalues and eigenvectors

Definition. Let A ∈ Mn,n(F). A scalar λ ∈ F is
called an eigenvalue of the matrix A if Av = λv

for a nonzero column vector v ∈ F
n.

The vector v is called an eigenvector of A

belonging to (or associated with) the eigenvalue λ.

Remarks. • Alternative notation:
eigenvalue = characteristic value,
eigenvector = characteristic vector.

• The zero vector is never considered an
eigenvector.



Example. A =

(

0 1
1 0

)

.

(

0 1
1 0

)(

1
1

)

=

(

1
1

)

,

(

0 1
1 0

)(

1
−1

)

=

(

−1
1

)

.

Hence

(

1
1

)

is an eigenvector of A belonging to the

eigenvalue 1, while

(

1
−1

)

is an eigenvector of A

belonging to the eigenvalue −1.



Eigenspaces

Let A be an n×n matrix. Let v be an eigenvector
of A belonging to an eigenvalue λ. Then

Av = λv =⇒ Av = (λI )v =⇒ (A − λI )v = 0.

Hence v ∈ N (A − λI ), the null-space of the matrix
A − λI .

Conversely, if x ∈ N (A − λI ) then Ax = λx.
Thus the eigenvectors of A belonging to the
eigenvalue λ are nonzero vectors from N (A − λI ).

Definition. If N (A − λI ) 6= {0} then it is called
the eigenspace of the matrix A corresponding to
the eigenvalue λ.



How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ,
the following conditions are equivalent:

• λ is an eigenvalue of A,
• N (A − λI ) 6= {0},
• the matrix A − λI is not invertible,
• det(A − λI ) = 0.

Definition. det(A − λI ) = 0 is called the
characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic
equation. Associated eigenvectors of A are nonzero
solutions of the equation (A − λI )x = 0.



Example. A =

(

a b

c d

)

.

det(A − λI ) =

∣

∣

∣

∣

a − λ b

c d − λ

∣

∣

∣

∣

= (a − λ)(d − λ) − bc

= λ2 − (a + d)λ + (ad − bc).



Example. A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



.

det(A − λI ) =

∣

∣

∣

∣

∣

∣

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣

∣

∣

∣

∣

∣

= −λ3 + c1λ
2 − c2λ + c3,

where c1 = a11 + a22 + a33 (the trace of A),

c2 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

+

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

+

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

,

c3 = det A.



Theorem. Let A = (aij) be an n×n matrix.
Then det(A − λI ) is a polynomial of λ of degree n:

det(A − λI ) = (−1)nλn + c1λ
n−1 + · · · + cn−1λ + cn.

Furthermore, (−1)n−1c1 = a11 + a22 + · · · + ann

and cn = det A.

Definition. The polynomial p(λ) = det(A − λI ) is
called the characteristic polynomial of the matrix A.

Corollary Any n×n matrix has at most n

eigenvalues.



Example. A =

(

2 1
1 2

)

.

Characteristic equation:

∣

∣

∣

∣

2 − λ 1
1 2 − λ

∣

∣

∣

∣

= 0.

(2 − λ)2 − 1 = 0 =⇒ λ1 = 1, λ2 = 3.

(A − I )x = 0 ⇐⇒
(

1 1
1 1

)(

x

y

)

=

(

0
0

)

⇐⇒
(

1 1
0 0

)(

x

y

)

=

(

0
0

)

⇐⇒ x + y = 0.

The general solution is (−t, t) = t(−1, 1), t ∈ R.
Thus v1 = (−1, 1) is an eigenvector associated
with the eigenvalue 1. The corresponding
eigenspace is the line spanned by v1.



(A − 3I )x = 0 ⇐⇒
(

−1 1
1 −1

)(

x

y

)

=

(

0
0

)

⇐⇒
(

1 −1
0 0

)(

x

y

)

=

(

0
0

)

⇐⇒ x − y = 0.

The general solution is (t, t) = t(1, 1), t ∈ R.

Thus v2 = (1, 1) is an eigenvector associated with
the eigenvalue 3. The corresponding eigenspace is
the line spanned by v2.



Summary. A =

(

2 1
1 2

)

.

• The matrix A has two eigenvalues: 1 and 3.

• The eigenspace of A associated with the
eigenvalue 1 is the line t(−1, 1).

• The eigenspace of A associated with the
eigenvalue 3 is the line t(1, 1).

• Eigenvectors v1 = (−1, 1) and v2 = (1, 1) of
the matrix A are orthogonal and form a basis for R

2.

• Geometrically, the mapping x 7→ Ax is a stretch
by a factor of 3 away from the line x + y = 0 in
the orthogonal direction.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and L : V → V be a
linear operator. A scalar λ is called an eigenvalue of the

operator L if L(v) = λv for a nonzero vector v ∈ V . The

vector v is called an eigenvector of L associated with the
eigenvalue λ.

If V = F
n then the linear operator L is given by L(x) = Ax,

where A is an n×n matrix. In this case, eigenvalues and
eigenvectors of the operator L are precisely eigenvalues and
eigenvectors of the matrix A.

For a general finite-dimensional vector space V , we choose an
ordered basis α. Then

L(v) = λv ⇐⇒ [L]α[v]α = λ[v]α.

Hence the eigenvalues of L coincide with those of the matrix
[L]α. Moreover, the associated eigenvectors of [L]α are
coordinates of the eigenvectors of L.


