MATH 423
 Linear Algebra II

Lecture 21:

Eigenvalues and eigenvectors (continued).
Diagonalization.

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A scalar $\lambda \in \mathbb{F}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{F}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $\mathcal{N}(A-\lambda I)$, which is nontrivial, is called the eigenspace of A corresponding to λ (denoted \mathcal{E}_{λ}). The eigenspace \mathcal{E}_{λ} consists of all eigenvectors belonging to the eigenvalue λ and the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $\operatorname{det}(A-\lambda /)=0$ is called the characteristic equation of A.
Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda)=\operatorname{det}(A-\lambda I)$ is
a polynomial of degree n. It is called the characteristic polynomial of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ. If V is a functional space then eigenvectors are usually called eigenfunctions.

If $V=\mathbb{F}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Suppose $L: V \rightarrow V$ is a linear operator on a finite-dimensional vector space V. Let α be an ordered basis for V. Then

$$
L(\mathbf{v})=\lambda \mathbf{v} \Longleftrightarrow[L]_{\alpha}[\mathbf{v}]_{\alpha}=\lambda[\mathbf{v}]_{\alpha} .
$$

Hence the eigenvalues of L coincide with those of the matrix $[L]_{\alpha}$. Moreover, the associated eigenvectors of $[L]_{\alpha}$ are coordinates of the eigenvectors of L. As a consequence, the number of eigenvalues of L cannot exceed $\operatorname{dim} V$.

Definition. The characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ of the matrix $A=[L]_{\alpha}$ is called the characteristic polynomial of the operator L.
Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let A and B be matrices of L with respect to different bases α and β. Then $B=U A U^{-1}$, where $U=\left[\mathrm{id}_{V}\right]_{\alpha}^{\beta}$ is the transition matrix that changes coordinates from the basis α to β. We have to show that $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$ for all $\lambda \in \mathbb{F}$. Indeed,

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(U A U^{-1}-\lambda I\right) \\
=\operatorname{det}\left(U A U^{-1}-U(\lambda I) U^{-1}\right)=\operatorname{det}\left(U(A-\lambda I) U^{-1}\right) \\
=\operatorname{det}(U) \operatorname{det}(A-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(A-\lambda I)
\end{gathered}
$$

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{F}$, let \mathcal{E}_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then \mathcal{E}_{λ} is a subspace of V since \mathcal{E}_{λ} is the nullspace of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
\mathcal{E}_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ. In particular, $\lambda \in \mathbb{F}$ is an eigenvalue of L if and only if $\mathcal{E}_{\lambda} \neq\{\mathbf{0}\}$.
If $\mathcal{E}_{\lambda} \neq\{\mathbf{0}\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad D: V \rightarrow V, \quad D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.
Remark. If we consider D as an operator on the complex vector space $C^{\infty}(\mathbb{R}, \mathbb{C})$ then, similarly, each $\lambda \in \mathbb{C}$ is an eigenvalue of D and the corresponding eigenspace is spanned by $e^{\lambda x}$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.
Proposition 1 If $\mathbf{v} \in V$ is an eigenvector of the operator L then the associated eigenvalue is unique.

Proof: Suppose that $L(\mathbf{v})=\lambda_{1} \mathbf{v}$ and $L(\mathbf{v})=\lambda_{2} \mathbf{v}$. Then $\lambda_{1} \mathbf{v}=\lambda_{2} \mathbf{v} \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}=\mathbf{0} \Longrightarrow \lambda_{1}-\lambda_{2}=0 \Longrightarrow \lambda_{1}=\lambda_{2}$.

Proposition 2 Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of L associated with different eigenvalues λ_{1} and λ_{2}. Then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

Proof: For any scalar $t \neq 0$ the vector $t \mathbf{v}_{1}$ is also an eigenvector of L associated with the eigenvalue λ_{1}. Since $\lambda_{2} \neq \lambda_{1}$, it follows that $\mathbf{v}_{2} \neq t \mathbf{v}_{1}$. That is, \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}. Similarly, \mathbf{v}_{1} is not a scalar multiple of \mathbf{v}_{2}.

Let $L: V \rightarrow V$ be a linear operator.
Proposition 3 If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of L associated with distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}, then they are linearly independent.
Proof: Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}=\mathbf{0}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{F}$. Then

$$
\begin{gathered}
L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0} \\
t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+t_{3} L\left(\mathbf{v}_{3}\right)=\mathbf{0} \\
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0}
\end{gathered}
$$

It follows that

$$
\begin{aligned}
t_{1} \lambda_{1} \mathbf{v}_{1} & +t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}-\lambda_{3}\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0} \\
& \Longrightarrow t_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+t_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0}
\end{aligned}
$$

By the above, \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
Hence $t_{1}\left(\lambda_{1}-\lambda_{3}\right)=t_{2}\left(\lambda_{2}-\lambda_{3}\right)=0 \Longrightarrow t_{1}=t_{2}=0$
Then $t_{3}=0$ as well.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem, the eigenfunctions are linearly independent.

Corollary 2 If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a matrix A associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct real roots. Then \mathbb{F}^{n} has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct real roots of the characteristic equation. Any λ_{i} is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_{i}. By Corollary 2 , vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Therefore they form a basis for \mathbb{F}^{n}.

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \rightarrow V$ be a linear operator. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$
L\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow A=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as
$A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{F}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$. - Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Notice that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

There are two obstructions to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.
Example 1. $\quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.
Example 2. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. $\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

