MATH 423
Linear Algebra Il

Lecture 21:
Eigenvalues and eigenvectors (continued).
Diagonalization.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an nxn matrix. A scalar
A € F is called an eigenvalue of the matrix A if

Av = \v| for a nonzero column vector v € [F".

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue \.

If A is an eigenvalue of A then the nullspace

N (A — \I), which is nontrivial, is called the
eigenspace of A corresponding to A (denoted &)).
The eigenspace &£, consists of all eigenvectors
belonging to the eigenvalue A and the zero vector.



Characteristic equation

Definition. Given a square matrix A, the equation
det(A — A/) = 0 is called the characteristic

equation of A.

Eigenvalues A of A are roots of the characteristic
equation.

If Aisan nxn matrix then p(\) = det(A — A/) is
a polynomial of degree n. It is called the
characteristic polynomial of A.

Theorem Any nxn matrix has at most n
eigenvalues.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector spaceand L:V — V
be a linear operator. A number X is called an
eigenvalue of the operator L if |L(v) = Av| for a
nonzero vector v € V. The vector v is called an
eigenvector of L associated with the eigenvalue .
If V' is a functional space then eigenvectors are
usually called eigenfunctions.

If V =1IF" then the linear operator L is given by
L(x) = Ax, where Ais an nxn matrix.

In this case, eigenvalues and eigenvectors of the
operator L are precisely eigenvalues and
eigenvectors of the matrix A.



Suppose L:V — V is a linear operator on a
finite-dimensional vector space V. Let a be an
ordered basis for V. Then

L(v) = v <= [L]a[V]a = AV]a-

Hence the eigenvalues of L coincide with those of the matrix
[L],. Moreover, the associated eigenvectors of [L], are
coordinates of the eigenvectors of L. As a consequence, the
number of eigenvalues of L cannot exceed dim V.

Definition. The characteristic polynomial
p(A) = det(A— Al) of the matrix A = [L], is called
the characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.

Proof: Let A and B be matrices of L with respect
to different bases o and 3. Then B = UAU!,
where U = [idy]? is the transition matrix that
changes coordinates from the basis o to 3. We
have to show that det(B — Al) = det(A — Al) for
all A € F. Indeed,
det(B — \) = det(UAU™ — \I)

= det(UAU_1 — U()\/)U_l) = det(U(A — )\/)U_l)

= det(U) det(A — A1) det(U!) = det(A — \I).



Eigenspaces

Let L: V — V be a linear operator.
For any A € IF, let £, denotes the set of all
solutions of the equation L(x) = Ax.

Then &) is a subspace of V since &, is the nullspace
of a linear operator given by x — L(x) — Ax.

&\ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue .
In particular, A € F is an eigenvalue of L if and
only if &, # {0}.

If £\ # {0} then it is called the eigenspace of L
corresponding to the eigenvalue .



Example. V =C>*(R), D:V — V, Df =f".

A function f € C*(R) is an eigenfunction of the
operator D belonging to an eigenvalue X if

f'(x) = Af(x) for all x € R.

It follows that f(x) = ce™, where c is a nonzero
constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e*.

Remark. If we consider D as an operator on the
complex vector space C*(R,C) then, similarly,
each \ € C is an eigenvalue of D and the
corresponding eigenspace is spanned by e'*.



Let V be a vector space and L: V — V be a linear
operator.

Proposition 1 If v € V is an eigenvector of the
operator L then the associated eigenvalue is unique.

Proof: Suppose that L(v) = A;v and L(v) = Apv. Then
AMV=Xv = (M1 —v=0 = A\ — =0 = )\ = \,.

Proposition 2 Suppose v; and v, are eigenvectors
of L associated with different eigenvalues A\; and \,.
Then v; and v, are linearly independent.

Proof: For any scalar t # 0 the vector tv; is also an
eigenvector of L associated with the eigenvalue ;. Since

A2 # Ap, it follows that v, # tvy. That is, v, is not a scalar
multiple of vy. Similarly, v; is not a scalar multiple of v,.



Let L:V — V be a linear operator.

Proposition 3 If vi, vy, and v3 are eigenvectors of
L associated with distinct eigenvalues A1, Ay, and
A3, then they are linearly independent.
Proof: Suppose that t;v; + thov, + t3vz = 0 for some
ti,tr, t3 € F. Then
L(tyvy + tovp + t3v3) = 0,
tiL(vy) + toL(v2) + t3L(v3) =0,
tAV1 + B Aovs + t3A3vs = 0.

It follows that

t1A1V1 + o Aovo + t3Asvs — A3(tvy + tovo + tav3) = 0

= t1(A1 — M3)v1 + B(Aa — A3)va = 0.

By the above, v; and v, are linearly independent.
Hence ti(M —A3) =t(Ma—A3) =0 = t; =t,=0
Then t3 =0 as well.



Theorem |If vy, vy, ..., v, are eigenvectors of a
linear operator L associated with distinct
eigenvalues A1, Ay, ..., Ak, then vi, vy, ... v, are
linearly independent.

Corollary 1 If A, Ay, ..., A\ are distinct real
numbers, then the functions e, e’ ... eM* are
linearly independent.

Proof: Consider a linear operator D : C*(R) — C>(R)
given by Df = f'. Then e’*, ... eMX are eigenfunctions of

D associated with distinct eigenvalues A1,..., At. By the
theorem, the eigenfunctions are linearly independent.



Corollary 2 If vy,v,, ..., v, are eigenvectors of a
matrix A associated with distinct eigenvalues

A1, Ao, ..., Ak, then vy, vy, ... v are linearly
independent.

Corollary 3 Let A be an nxn matrix such that the
characteristic equation det(A — A/) =0 has n
distinct real roots. Then F” has a basis consisting
of eigenvectors of A.

Proof: Let A1, X\»,..., A, be distinct real roots of the
characteristic equation. Any J\; is an eigenvalue of A, hence
there is an associated eigenvector v;. By Corollary 2, vectors

V1,Vo,...,V, are linearly independent. Therefore they form a
basis for F".



Basis of eigenvectors

Let V be a finite-dimensional vector space and
L:V — V be a linear operator. Let vi,vy,...,v,
be a basis for V and A be the matrix of the
operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors vi, Vo, ...,V, are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

A1 o

L(V,') = )\,’V,’ — A= A2

0] An



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal,
e there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an nxn matrix. Then the following
conditions are equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU™!, where the matrix B is diagonal;

e there exists a basis for " formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



2 1
Example. A = (1 2).

e The matrix A has two eigenvalues: 1 and 3.
e The eigenspace of A associated with the
eigenvalue 1 is the line spanned by v; = (—1,1).
e The eigenspace of A associated with the
eigenvalue 3 is the line spanned by v, = (1,1).
e Eigenvectors v; and v, form a basis for R2.

Thus the matrix A is diagonalizable. Namely,
A= UBU™1 where

(9 (1)

Notice that U is the transition matrix from the basis v, v, to
the standard basis.



There are two obstructions to existence of a basis
consisting of eigenvectors. They are illustrated by
the following examples.

11
Example 1. A= <0 1).
det(A— M) = (A —1)?. Hence A =1 is the only
eigenvalue. The associated eigenspace is the line
t(1,0).
0 -1
Example 2. A= (1 O)'
det(A— M) =X+ 1.
—> no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



