MATH 423
 Linear Algebra II

Lecture 22:
Diagonalization (continued). Matrix polynomials.

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \rightarrow V$ be a linear operator. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$
L\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow A=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as
$A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{F}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.

Diagonalization of a matrix

The diagonalization of an $n \times n$ matrix A consists of finding a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$. Suppose we have such a representation. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be consecutive columns of the matrix U. These are linearly independent vectors (since U is invertible), hence they form a basis β for \mathbb{F}^{n}. Then U is the transition matrix from β to the standard basis α. Consider a linear operator L_{A} on \mathbb{F}^{n} given by $L_{A}(\mathbf{x})=A \mathbf{x}$. We have $\left[L_{A}\right]_{\alpha}=A$. Therefore

$$
\left[L_{A}\right]_{\beta}=[\mathrm{id}]_{\alpha}^{\beta}\left[L_{A}\right]_{\alpha}^{\alpha}[\mathrm{id}]_{\beta}^{\alpha}=U^{-1} A U=U^{-1}\left(U B U^{-1}\right) U=B .
$$

Thus the matrix of L_{A} relative to the basis β is diagonal, which implies that β consists of eigenvectors of L_{A} (i.e., of A).

Conversely, suppose there exists a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ for \mathbb{F}^{n} formed by eigenvectors of the matrix $A: A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, 1 \leq i \leq n$. Then $A=U B U^{-1}$, where $U=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$ and $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
We need to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.
Suppose that $\mathbf{v}_{1}=\binom{x_{1}}{y_{1}}, \mathbf{v}_{2}=\binom{x_{2}}{y_{2}}$ is a basis for \mathbb{R}^{2} formed by eigenvectors of A, i.e., $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ for some $\lambda_{i} \in \mathbb{R}$. Then we can take

$$
B=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad U=\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right) .
$$

Note that U is the transition matrix that changes coordinates from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
Characteristic equation of A : $\left|\begin{array}{cc}4-\lambda & 3 \\ 0 & 1-\lambda\end{array}\right|=0$.
$(4-\lambda)(1-\lambda)=0 \quad \Longrightarrow \quad \lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=\binom{1}{0}, \mathbf{v}_{2}=\binom{1}{1}$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Suppose we have a problem that involves a square matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal matrix is simple. Then the diagonalization may help in solving this problem (or may not). Namely, it may reduce the case of a diagonalizable matrix to that of a diagonal one.

An example of such a problem is, given a square matrix A, to find its power A^{k} :
$A=\left(\begin{array}{cccc}s_{1} & & & O \\ & s_{2} & & \\ & & \ddots & \\ O & & & s_{n}\end{array}\right) \Longrightarrow A^{k}=\left(\begin{array}{cccc}s_{1}^{k} & & & O \\ & s_{2}^{k} & & \\ & & \ddots & \\ 0 & & & s_{n}^{k}\end{array}\right)$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find A^{5}.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Then $A^{5}=U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1}$

$$
\begin{aligned}
& =U B^{5} U^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1024 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cr}
1024 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1024 & 1023 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find $A^{k}(k \geq 1)$.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\begin{aligned}
A^{k} & =U B^{k} U^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
4^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{rr}
4^{k} & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
4^{k} & 4^{k}-1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Matrix polynomials

Definition. Given an $n \times n$ matrix A, we let

$$
A^{2}=A A, \quad A^{3}=A A A, \ldots, \quad A^{k}=\underbrace{A A \ldots A}_{k \text { times }}, \ldots
$$

Also, let $A^{1}=A$ and $A^{0}=I_{n}$.
Associativity of matrix multiplication implies that all powers A^{k} are well defined and $A^{j} A^{k}=A^{i+k}$ for all $j, k \geq 0$. In particular, all powers of A commute.

Definition. For any polynomial

$$
p(x)=c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m-1} x+c_{m},
$$

$$
\text { let } p(A)=c_{0} A^{m}+c_{1} A^{m-1}+\cdots+c_{m-1} A+c_{m} I_{n} \text {. }
$$

$$
\begin{aligned}
p(C) & =C^{2}-3 C+I=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{2}-3\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)-\left(\begin{array}{ll}
6 & 3 \\
3 & 3
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus $C^{2}-3 C+I=0$.
Remark. $p(x)$ is the characteristic polynomial of the matrix C.

Properties of matrix polynomials

Suppose A is a square matrix, $p(x), p_{1}(x), p_{2}(x)$ are polynomials, and r is a scalar. Then

$$
\begin{array}{ll}
p(x)=p_{1}(x)+p_{2}(x) & \Longrightarrow p(A)=p_{1}(A)+p_{2}(A) \\
p(x)=r p_{1}(x) & \Longrightarrow p(A)=r p_{1}(A) \\
p(x)=p_{1}(x) p_{2}(x) & \Longrightarrow p(A)=p_{1}(A) p_{2}(A) \\
p(x)=p_{1}\left(p_{2}(x)\right) & \Longrightarrow p(A)=p_{1}\left(p_{2}(A)\right)
\end{array}
$$

In particular, matrix polynomials $p_{1}(A)$ and $p_{2}(A)$ always commute.
Theorem If $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ then

$$
p(A)=\operatorname{diag}\left(p\left(s_{1}\right), p\left(s_{2}\right), \ldots, p\left(s_{n}\right)\right)
$$

Examples.

- $(A-I)(A+I)=A^{2}-I$
- $(A+I)^{2}=A^{2}+2 A+I$
- $(A-I)^{2}=A^{2}-2 A+I$
- $(A+I)^{3}=A^{3}+3 A^{2}+3 A+I$
- $(A-I)^{3}=A^{3}-3 A^{2}+3 A-I$
- $(A-I)\left(A^{2}+A+I\right)=A^{3}-I$
- $(A+I)\left(A^{2}-A+I\right)=A^{3}+I$

Remark. On the other hand, the matrix equality $(A-B)(A+B)=A^{2}-B^{2}$ holds only if $A B=B A$.

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find $I+2 A-A^{3}$.
We have $A=U B U^{-1}$, where $B=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right), U=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)$.
Then $A^{2}=U B U^{-1} U B U^{-1}=U B^{2} U^{-1}$,
$A^{3}=A^{2} A=U B^{2} U^{-1} U B U^{-1}=U B^{3} U^{-1}$.
Further, $I+2 A-A^{3}=U I U^{-1}+2 U B U^{-1}-U B^{3} U^{-1}$
$=U\left(I+2 B-B^{3}\right) U^{-1}$. That is, $p(A)=U p(B) U^{-1}$, where $p(x)=1+2 x-x^{3}$. Thus

$$
\begin{aligned}
& p(A)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
p(4) & 0 \\
0 & p(1)
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
= & \left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-55 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-55 & -57 \\
0 & 2
\end{array}\right) .
\end{aligned}
$$

Theorem If $A=U B U^{-1}$, then $p(A)=U p(B) U^{-1}$ for any polynomial $p(x)$.

