MATH 423 Linear Algebra II

Lecture 22: Diagonalization (continued). Matrix polynomials.

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \rightarrow V$ be a linear operator. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$L(\mathbf{v}_i) = \lambda_i \mathbf{v}_i \iff A = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ & & \ddots & \\ O & & & \lambda_n \end{pmatrix}$$

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of *L* with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is **diagonalizable** if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A = UBU^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{F}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions.

Diagonalization of a matrix

The **diagonalization** of an $n \times n$ matrix A consists of finding a diagonal matrix B and an invertible matrix U such that $A = UBU^{-1}$. Suppose we have such a representation. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be consecutive columns of the matrix U. These are linearly independent vectors (since U is invertible), hence they form a basis β for \mathbb{F}^n . Then U is the transition matrix from β to the standard basis α . Consider a linear operator L_A on \mathbb{F}^n given by $L_A(\mathbf{x}) = A\mathbf{x}$. We have $[L_A]_{\alpha} = A$. Therefore

$$[L_{\mathcal{A}}]_{\beta} = [\mathrm{id}]_{\alpha}^{\beta} [L_{\mathcal{A}}]_{\alpha}^{\alpha} [\mathrm{id}]_{\beta}^{\alpha} = U^{-1} \mathcal{A} U = U^{-1} (U \mathcal{B} U^{-1}) U = \mathcal{B}.$$

Thus the matrix of L_A relative to the basis β is diagonal, which implies that β consists of eigenvectors of L_A (i.e., of A).

Conversely, suppose there exists a basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ for \mathbb{F}^n formed by eigenvectors of the matrix A: $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$, $1 \le i \le n$. Then $A = UBU^{-1}$, where $U = (\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n)$ and $B = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. *Problem.* Diagonalize the matrix $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$.

We need to find a diagonal matrix B and an invertible matrix U such that $A = UBU^{-1}$.

Suppose that $\mathbf{v}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ is a basis for \mathbb{R}^2 formed by eigenvectors of A, i.e., $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for some $\lambda_i \in \mathbb{R}$. Then we can take

$$B = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \qquad U = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}.$$

Note that U is the transition matrix that changes coordinates from $\mathbf{v}_1, \mathbf{v}_2$ to the standard basis.

Problem. Diagonalize the matrix
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
.
Characteristic equation of A : $\begin{vmatrix} 4 - \lambda & 3 \\ 0 & 1 - \lambda \end{vmatrix} = 0$.
 $(4 - \lambda)(1 - \lambda) = 0 \implies \lambda_1 = 4, \ \lambda_2 = 1$.
Associated eigenvectors: $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
Thus $A = UBU^{-1}$, where

$$B=egin{pmatrix} 4&0\0&1 \end{pmatrix}$$
, $U=egin{pmatrix} 1&-1\0&1 \end{pmatrix}$.

Suppose we have a problem that involves a square matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal matrix is simple. Then the diagonalization may help in solving this problem (or may not). Namely, it may reduce the case of a diagonalizable matrix to that of a diagonal one.

An example of such a problem is, given a square matrix A, to find its power A^k :

$$A = \begin{pmatrix} s_1 & & O \\ s_2 & & \\ & \ddots & \\ O & & s_n \end{pmatrix} \implies A^k = \begin{pmatrix} s_1^k & & O \\ s_2^k & & \\ & \ddots & \\ O & & s_n^k \end{pmatrix}$$

Problem. Let
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
. Find A^5 .

We know that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$
, $U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

Then $A^5 = UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}$ = $UB^5U^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1024 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 1024 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1024 & 1023 \\ 0 & 1 \end{pmatrix}$.

Problem. Let
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
. Find A^k $(k \ge 1)$.

We know that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$
, $U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

Then

$$A^{k} = UB^{k}U^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4^{k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 4^{k} & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4^{k} & 4^{k} - 1 \\ 0 & 1 \end{pmatrix}.$$

Matrix polynomials

Definition. Given an
$$n \times n$$
 matrix A , we let
 $A^2 = AA, A^3 = AAA, \ldots, A^k = \underbrace{AA \ldots A}_{k \text{ times}}, \ldots$
Also, let $A^1 = A$ and $A^0 = I_n$.

Associativity of matrix multiplication implies that all powers A^k are well defined and $A^j A^k = A^{j+k}$ for all $j, k \ge 0$. In particular, all powers of A commute.

Definition. For any polynomial $p(x) = c_0 x^m + c_1 x^{m-1} + \dots + c_{m-1} x + c_m,$ let $p(A) = c_0 A^m + c_1 A^{m-1} + \dots + c_{m-1} A + c_m I_n.$

Example.
$$p(x) = x^2 - 3x + 1$$
, $C = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

$$p(C) = C^{2} - 3C + I = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^{2} - 3\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 6 & 3 \\ 3 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$
Thus $C^{2} - 3C + I = O$

Remark. p(x) is the characteristic polynomial of the matrix *C*.

Properties of matrix polynomials

Suppose A is a square matrix, p(x), $p_1(x)$, $p_2(x)$ are polynomials, and r is a scalar. Then

 $p(x) = p_1(x) + p_2(x) \implies p(A) = p_1(A) + p_2(A)$ $p(x) = rp_1(x) \implies p(A) = rp_1(A)$ $p(x) = p_1(x)p_2(x) \implies p(A) = p_1(A)p_2(A)$ $p(x) = p_1(p_2(x)) \implies p(A) = p_1(p_2(A))$

In particular, matrix polynomials $p_1(A)$ and $p_2(A)$ always commute.

Theorem If $A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$ then $p(A) = \operatorname{diag}(p(s_1), p(s_2), \ldots, p(s_n)).$ Examples.

•
$$(A - I)(A + I) = A^2 - I$$

• $(A + I)^2 = A^2 + 2A + I$
• $(A - I)^2 = A^2 - 2A + I$
• $(A + I)^3 = A^3 + 3A^2 + 3A + I$
• $(A - I)^3 = A^3 - 3A^2 + 3A - I$
• $(A - I)(A^2 + A + I) = A^3 - I$
• $(A + I)(A^2 - A + I) = A^3 + I$

Remark. On the other hand, the matrix equality $(A - B)(A + B) = A^2 - B^2$ holds only if AB = BA.

Problem. Let
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
. Find $I + 2A - A^3$.

We have $A = UBU^{-1}$, where $B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

Then
$$A^2 = UBU^{-1}UBU^{-1} = UB^2U^{-1}$$
,
 $A^3 = A^2A = UB^2U^{-1}UBU^{-1} = UB^3U^{-1}$.
Further, $I + 2A - A^3 = UIU^{-1} + 2UBU^{-1} - UB^3U^{-1}$
 $= U(I + 2B - B^3)U^{-1}$. That is, $p(A) = Up(B)U^{-1}$, where
 $p(x) = 1 + 2x - x^3$. Thus

$$p(A) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p(4) & 0 \\ 0 & p(1) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -55 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -55 & -57 \\ 0 & 2 \end{pmatrix}.$$

Theorem If $A = UBU^{-1}$, then $p(A) = Up(B)U^{-1}$ for any polynomial p(x).