MATH 423 Linear Algebra II

Lecture 23: Diagonalization (continued). The Cayley-Hamilton theorem.

Matrix polynomials

Definition. For any $n \times n$ matrix A and any polynomial

$$p(x) = c_0 x^m + c_1 x^{m-1} + \dots + c_{m-1} x + c_m,$$

let $p(A) = c_0 A^m + c_1 A^{m-1} + \dots + c_{m-1} A + c_m I_n.$

Theorem 1 If
$$A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$$
 then $p(A) = \operatorname{diag}(p(s_1), p(s_2), \ldots, p(s_n)).$

Theorem 2 If $A = UBU^{-1}$, then $p(A) = Up(B)U^{-1}$ for any polynomial p(x).

Problem. Let
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
. Find a matrix C such that $C^2 = A$.

We know from the previous lecture that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Suppose that $D^2 = B$ for some matrix D. Let $C = UDU^{-1}$. Then $C^2 = UDU^{-1}UDU^{-1} = UD^2U^{-1} = UBU^{-1} = A$.

We can take
$$D = \begin{pmatrix} \sqrt{4} & 0 \\ 0 & \sqrt{1} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then
$$C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

Proposition An eigenvector of a matrix A is also an eigenvector of any matrix polynomial p(A). The associated eigenvalue for p(A) is $p(\lambda)$, where λ is the eigenvalue for A.

Sketch of the proof: Suppose that $A\mathbf{v} = \lambda \mathbf{v}$, where $\mathbf{v} \neq \mathbf{0}$. Then $A^k \mathbf{v} = \lambda^k \mathbf{v}$ for k = 0, 1, 2, ... $\implies p(A)\mathbf{v} = p(\lambda)\mathbf{v}$ for any polynomial p(x).

Cayley-Hamilton Theorem Consider the characteristic polynomial $p(\lambda) = det(A - \lambda I)$. Then p(A) = O.

Remark. Notice that $p(A) \neq det(A - AI)$!!!

Characterizations of a direct sum

Suppose V_1, V_2, \ldots, V_k are nontrivial subspaces of a vector space V and let $W = V_1 + V_2 + \cdots + V_k$.

Theorem The following conditions are equivalent:

(i) the subspaces V_1, V_2, \ldots, V_k form a direct sum: $W = V_1 \oplus V_2 \oplus \cdots \oplus V_k$;

(ii) if \mathbf{v}_i is any nonzero vector from V_i for $1 \le i \le k$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent vectors;

(iii) if S_i is any basis for V_i , $1 \le i \le k$, then these bases are disjoint and the union $S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent set;

(iv) if S_i is any basis for V_i , $1 \le i \le k$, then these bases are disjoint and the union $S_1 \cup S_2 \cup \cdots \cup S_k$ is a basis for W. In the case dim $W < \infty$, there is one more equivalent condition: (v) dim $W = \sum_{i=1}^k \dim V_i$.

How to find a basis of eigenvectors

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator *L* associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Corollary 1 The sum of the eigenspaces $\mathcal{E}_{\lambda_1}, \mathcal{E}_{\lambda_2}, \dots, \mathcal{E}_{\lambda_k}$ of the operator *L* is direct.

Corollary 2 Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be all eigenvalues of a linear operator $L: V \to V$. For any $1 \le i \le k$, let S_i be a basis for the eigenspace \mathcal{E}_{λ_i} . Then these bases are disjoint and the union $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent set. Moreover, L is diagonalizable if and only if S is a basis for V.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $det(A - \lambda I) = 0$ has n distinct roots. Then (i) there is a basis for \mathbb{F}^n consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Characteristic equation:

$$egin{array}{ccc|c} 1-\lambda & 1 & -1 \ 1 & 1-\lambda & 1 \ 0 & 0 & 2-\lambda \end{array} = 0.$$

Expand the determinant by the 3rd row:

$$(2-\lambda)\begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix} = 0.$$

$$((1-\lambda)^2-1)(2-\lambda)=0 \iff -\lambda(2-\lambda)^2=0$$

 $\implies \lambda_1=0, \ \lambda_2=2.$

$$A\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Convert the matrix to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$A\mathbf{x} = \mathbf{0} \iff \begin{cases} x + y = 0, \\ z = 0. \end{cases}$$

The general solution is (-t, t, 0) = t(-1, 1, 0), $t \in \mathbb{R}$. Thus $\mathbf{v}_1 = (-1, 1, 0)$ is an eigenvector associated with the eigenvalue 0. The corresponding eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-2I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x - y + z = 0.$$

The general solution is x = t - s, y = t, z = s, where $t, s \in \mathbb{R}$. Equivalently,

$$\mathbf{x} = (t - s, t, s) = t(1, 1, 0) + s(-1, 0, 1).$$

Thus $\mathbf{v}_2 = (1, 1, 0)$ and $\mathbf{v}_3 = (-1, 0, 1)$ are eigenvectors associated with the eigenvalue 2. The corresponding eigenspace is the plane spanned by \mathbf{v}_2 and \mathbf{v}_3 .

Summary.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenspace \mathcal{E}_0 is one-dimensional; it has a basis $S_1 = \{\mathbf{v}_1\}$, where $\mathbf{v}_1 = (-1, 1, 0)$.
- The eigenspace \mathcal{E}_2 is two-dimensional; it has a basis $S_2 = \{\mathbf{v}_2, \mathbf{v}_3\}$, where $\mathbf{v}_2 = (1, 1, 0)$, $\mathbf{v}_3 = (-1, 0, 1)$.

• The union $S_1 \cup S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^3 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Example.
$$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
.

Eigenvalues of A are roots of its characteristic polynomial

$$\det(A - \lambda I) = egin{bmatrix} -\lambda & -1 & 0 & 0 \ 1 & -\lambda & 0 & 0 \ 1 & 0 & -\lambda & -1 \ 0 & 1 & 1 & -\lambda \ \end{bmatrix}.$$

Let us expand the determinant by the 1st row.

Expand the determinant by the 1st row:

$$\det(A - \lambda I) = -\lambda \begin{vmatrix} -\lambda & 0 & 0 \\ 0 & -\lambda & -1 \\ 1 & 1 & -\lambda \end{vmatrix} - (-1) \begin{vmatrix} 1 & 0 & 0 \\ 1 & -\lambda & -1 \\ 0 & 1 & -\lambda \end{vmatrix}$$

Expand both 3×3 determinants by the 1st row:

$$\det(A - \lambda I) = (-\lambda)^2 \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} + \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix}$$

 $= \lambda^2 (\lambda^2 + 1) + (\lambda^2 + 1) = (\lambda^2 + 1)^2.$

Since there are no real eigenvalues, A is not diagonalizable in \mathbb{R}^4 . How about \mathbb{C}^4 ?

$$\det(A - \lambda I) = (\lambda^2 + 1)^2 = (\lambda - i)^2 (\lambda + i)^2$$

The eigenvalues are i and -i.

One can show that both eigenspaces of A are one-dimensional. The eigenspace for i is spanned by (0, 0, i, 1) and the eigenspace for -i spanned by (0, 0, -i, 1). It follows that the matrix A is not diagonalizable in \mathbb{C}^4 .

There is also an indirect way to show that A is not diagonalizable in \mathbb{C}^4 . Assume the contrary. Then $A = UXU^{-1}$, where U is an invertible matrix with complex entries and

$$X = egin{pmatrix} i & 0 & 0 & 0 \ 0 & i & 0 & 0 \ 0 & 0 & -i & 0 \ 0 & 0 & 0 & -i \end{pmatrix}$$

(note that X should have the same characteristic polynomial as A). This would imply that $A^2 = UX^2U^{-1}$. But $X^2 = -I$ so that $A^2 = U(-I)U^{-1} = -I$.

One can easily check that, in fact, $A^2 \neq -I$.