MATH 423
Linear Algebra Il

Lecture 23:
Diagonalization (continued).
The Cayley-Hamilton theorem.



Matrix polynomials

Definition. For any nxn matrix A and any
polynomial

p(x) = cox™ + cx™ 1+ + cpo1x + Cm,
let p(A) = @A™ + A" L+ -+ 1A+ Gl

Theorem 1 If A= diag(s;,s,...,s,) then
p(A) = diag(p(s1), p(%2), - - -, p(sn))-

Theorem 2 If A= UBU™!, then
p(A) = Up(B)U™? for any polynomial p(x).
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Problem. Let A = <0 1

that C? =

). Find a matrix C such

We know from the previous lecture that A = UBU™!, where

(9 0=

Suppose that D? = B for some matrix D. Let C = UDU™1.
Then C? = UDU~'UDU™! = UD?U~! = UBU™! = A.

(V4 0\ (20
WecantakeD_<0 vi) = \o 1)

mec=(o 1) (55 (01) (0 1)



Proposition An eigenvector of a matrix A is also
an eigenvector of any matrix polynomial p(A). The
associated eigenvalue for p(A) is p()\), where X is
the eigenvalue for A.

Sketch of the proof: Suppose that Av = \v,
where v #£ 0. Then Akv = \v for
k=012 ...

—> p(A)v = p(A)v for any polynomial p(x).

Cayley-Hamilton Theorem Consider the
characteristic polynomial p(\) = det(A — A/).
Then p(A) = O.

Remark. Notice that p(A) # det(A — Al) I



Characterizations of a direct sum

Suppose Vi, Va, ..., Vi are nontrivial subspaces of a vector
space Vandlet W=V, +Vo+---+ V.

Theorem The following conditions are equivalent:

(i) the subspaces Vi, Vs, ..., Vi form a direct sum:
W=VieVod oV

(ii) if v; is any nonzero vector from V; for 1 < i < k, then
V1,Vo, ...,V are linearly independent vectors;

(iii) if S; is any basis for V;, 1 < < k, then these bases are
disjoint and the union S; U S U---U S, is a linearly
independent set;

(iv) if S; is any basis for V;, 1 < i < k, then these bases are
disjoint and the union S U S U---U S, is a basis for W.

In the case dim W < oo, there is one more equivalent
condition: (v) dim W = Zf.‘zl dim V.



How to find a basis of eigenvectors

Theorem If vq,v,,..., v, are eigenvectors of a linear
operator L associated with distinct eigenvalues A1, Ao, ..., A,
then vy, vo, ... v, are linearly independent.

Corollary 1 The sum of the eigenspaces &),,&y,,...,Ey, of
the operator L is direct.

Corollary 2 Let A\, Ay, ..., A\ be all eigenvalues of a linear
operator L:V — V. Forany 1 </ <k, letS; be a basis for
the eigenspace £,,. Then these bases are disjoint and the
union S =5 US U---US is a linearly independent set.
Moreover, L is diagonalizable if and only if S is a basis for V.

Corollary 3 Let A be an nxn matrix such that the
characteristic equation det(A — Al) = 0 has n distinct roots.
Then (i) there is a basis for F" consisting of eigenvectors of A;
(i) all eigenspaces of A are one-dimensional.



11 -1
Example. A=111 1
00 2
Characteristic equation:
1—-Xx 1 —1
1 1-Xx 1 |=0.
0 0 2—-2A

Expand the determinant by the 3rd row:

1—)\ 1
(2-2) 11—\

(1=AP—1)(2-A) =0 = —A2—-A\)2=0
— AN =0, =2

o



11 —1 X 0

Ax=0 <= [1 1 1 yl =10

00 2 z 0
Convert the matrix to reduced row echelon form:
11 -1 11 —1 110
11 1] — 100 2] — 10 0 1
00 2 00 2 00O

Ax =0 <— {X+y:0’
z=0.

The general solution is (—t, t,0) = t(—1,1,0),

t € R. Thus v; =(—1,1,0) is an eigenvector
associated with the eigenvalue 0. The corresponding
eigenspace is the line spanned by v;.



-1 1 -1\ [/x 0
(A-2x=0 «— 1 -1 1](y]=10
0 0 0/ \z 0
1 -1 1\ /x 0
<~ [0 00 y|l|=10] < x—y+2z=0.
0 00/ \z 0

The general solutionis x=t—s, y=t, z=s,
where t,s € R. Equivalently,

x=(t—s,t,s)=1t(1,1,0)+s(—1,0,1).

Thus v, =(1,1,0) and vz =(—1,0,1) are
eigenvectors associated with the eigenvalue 2.

The corresponding eigenspace is the plane spanned
by v, and vs.



11 -1
Summary. A=11 1 1
00 2

e The matrix A has two eigenvalues: 0 and 2.

e The eigenspace & is one-dimensional; it has a basis

Sy ={v1}, where v; = (—1,1,0).

e The eigenspace &, is two-dimensional; it has a basis

Sy = {va,v3}, where v, =(1,1,0), v3 =(—1,0,1).

e The union S; U S, = {v1,vy,v3} is a linearly independent
set, hence it is a basis for R3.

Thus the matrix A is diagonalizable. Namely, A= UBU™!,
where

00O -1 1 -1
B=10 2 0], U= 11 0
0 0 2 00 1



Example. A=

O R = O
= O O O

= I = =
o~ oo

Eigenvalues of A are roots of its characteristic
polynomial

-A -1 0 0
det(A—\/) = 1 _é _g _?.
0 1 1 =\

Let us expand the determinant by the 1st row.



Expand the determinant by the 1st row:

-A 0 O 1 0 0
det(A—X)=-X| 0 =X —-1| —(=1)|1 =X —1|.
1 1 =X 0 1 =\
Expand both 3x3 determinants by the 1st row:
-\ -1 -\ —1
_ — (—)\)2
det(A — A) = (—X) ) _)\' ) _/\'.

=N+ 1)+ (M\+1)=(\+1)2

Since there are no real eigenvalues, A is not
diagonalizable in R*. How about C*?

det(A— M) = (N +1)2=(\—0)>\+1i)>

The eigenvalues are i and —i.



One can show that both eigenspaces of A are one-dimensional.
The eigenspace for i is spanned by (0,0,/,1) and the
eigenspace for —i spanned by (0,0, —/,1). It follows that the
matrix A is not diagonalizable in C*.

There is also an indirect way to show that A is not
diagonalizable in C*. Assume the contrary. Then

A = UXU™1, where U is an invertible matrix with complex
entries and

10 0 O
0/ 0 O
X = 00 -/ O
00 0 —i

(note that X should have the same characteristic polynomial
as A). This would imply that A = UX?U~!. But X? = —/
so that A2 = U(-Ut=—I.

One can easily check that, in fact, A% #£ —I.



