
MATH 423

Linear Algebra II

Lecture 23:
Diagonalization (continued).

The Cayley-Hamilton theorem.



Matrix polynomials

Definition. For any n×n matrix A and any
polynomial

p(x) = c0x
m + c1x

m−1 + · · · + cm−1x + cm,

let p(A) = c0A
m + c1A

m−1 + · · · + cm−1A + cmIn.

Theorem 1 If A = diag(s1, s2, . . . , sn) then

p(A) = diag
(

p(s1), p(s2), . . . , p(sn)
)

.

Theorem 2 If A = UBU−1, then
p(A) = Up(B)U−1 for any polynomial p(x).



Problem. Let A =

(

4 3
0 1

)

. Find a matrix C such

that C 2 = A.

We know from the previous lecture that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Suppose that D2 = B for some matrix D. Let C = UDU−1.
Then C 2 = UDU−1UDU−1 = UD2U−1 = UBU−1 = A.

We can take D =

(√
4 0

0
√

1

)

=

(

2 0
0 1

)

.

Then C =

(

1 −1
0 1

) (

2 0
0 1

) (

1 1
0 1

)

=

(

2 1
0 1

)

.



Proposition An eigenvector of a matrix A is also
an eigenvector of any matrix polynomial p(A). The
associated eigenvalue for p(A) is p(λ), where λ is
the eigenvalue for A.

Sketch of the proof: Suppose that Av = λv,
where v 6= 0. Then Akv = λkv for
k = 0, 1, 2, . . .
=⇒ p(A)v = p(λ)v for any polynomial p(x).

Cayley-Hamilton Theorem Consider the
characteristic polynomial p(λ) = det(A − λI ).
Then p(A) = O.

Remark. Notice that p(A) 6= det(A − AI ) !!!



Characterizations of a direct sum

Suppose V1, V2, . . . , Vk are nontrivial subspaces of a vector
space V and let W = V1 + V2 + · · · + Vk .

Theorem The following conditions are equivalent:

(i) the subspaces V1, V2, . . . , Vk form a direct sum:
W = V1 ⊕ V2 ⊕ · · · ⊕ Vk ;

(ii) if vi is any nonzero vector from Vi for 1 ≤ i ≤ k , then
v1, v2, . . . , vk are linearly independent vectors;

(iii) if Si is any basis for Vi , 1 ≤ i ≤ k , then these bases are
disjoint and the union S1 ∪ S2 ∪ · · · ∪ Sk is a linearly
independent set;

(iv) if Si is any basis for Vi , 1 ≤ i ≤ k , then these bases are
disjoint and the union S1 ∪ S2 ∪ · · · ∪ Sk is a basis for W .

In the case dim W < ∞, there is one more equivalent
condition: (v) dim W =

∑

k

i=1
dim Vi .



How to find a basis of eigenvectors

Theorem If v1, v2, . . . , vk are eigenvectors of a linear
operator L associated with distinct eigenvalues λ1, λ2, . . . , λk ,
then v1, v2, . . . , vk are linearly independent.

Corollary 1 The sum of the eigenspaces Eλ1
, Eλ2

, . . . , Eλk
of

the operator L is direct.

Corollary 2 Let λ1, λ2, . . . , λk be all eigenvalues of a linear
operator L : V → V . For any 1 ≤ i ≤ k , let Si be a basis for
the eigenspace Eλi

. Then these bases are disjoint and the
union S = S1 ∪ S2 ∪ · · · ∪ Sk is a linearly independent set.
Moreover, L is diagonalizable if and only if S is a basis for V .

Corollary 3 Let A be an n×n matrix such that the
characteristic equation det(A − λI ) = 0 has n distinct roots.
Then (i) there is a basis for F

n consisting of eigenvectors of A;
(ii) all eigenspaces of A are one-dimensional.



Example. A =





1 1 −1
1 1 1
0 0 2



.

Characteristic equation:
∣

∣

∣

∣

∣

∣

1 − λ 1 −1
1 1 − λ 1
0 0 2 − λ

∣

∣

∣

∣

∣

∣

= 0.

Expand the determinant by the 3rd row:

(2 − λ)

∣

∣

∣

∣

1 − λ 1
1 1 − λ

∣

∣

∣

∣

= 0.

(

(1 − λ)2 − 1
)

(2 − λ) = 0 ⇐⇒ −λ(2 − λ)2 = 0

=⇒ λ1 = 0, λ2 = 2.



Ax = 0 ⇐⇒





1 1 −1
1 1 1
0 0 2









x

y

z



 =





0
0
0





Convert the matrix to reduced row echelon form:




1 1 −1
1 1 1
0 0 2



 →





1 1 −1
0 0 2
0 0 2



 →





1 1 0
0 0 1
0 0 0





Ax = 0 ⇐⇒
{

x + y = 0,
z = 0.

The general solution is (−t, t, 0) = t(−1, 1, 0),
t ∈ R. Thus v1 = (−1, 1, 0) is an eigenvector
associated with the eigenvalue 0. The corresponding
eigenspace is the line spanned by v1.



(A − 2I )x = 0 ⇐⇒





−1 1 −1
1 −1 1
0 0 0









x

y

z



 =





0
0
0





⇐⇒





1 −1 1
0 0 0
0 0 0









x

y

z



 =





0
0
0



 ⇐⇒ x − y + z = 0.

The general solution is x = t − s, y = t, z = s,
where t, s ∈ R. Equivalently,

x = (t − s, t, s) = t(1, 1, 0) + s(−1, 0, 1).

Thus v2 = (1, 1, 0) and v3 = (−1, 0, 1) are
eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned
by v2 and v3.



Summary. A =





1 1 −1
1 1 1
0 0 2



.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenspace E0 is one-dimensional; it has a basis
S1 = {v1}, where v1 = (−1, 1, 0).

• The eigenspace E2 is two-dimensional; it has a basis
S2 = {v2, v3}, where v2 = (1, 1, 0), v3 = (−1, 0, 1).

• The union S1 ∪ S2 = {v1, v2, v3} is a linearly independent
set, hence it is a basis for R

3.

Thus the matrix A is diagonalizable. Namely, A = UBU−1,
where

B =





0 0 0
0 2 0
0 0 2



, U =





−1 1 −1
1 1 0
0 0 1



.



Example. A =









0 −1 0 0
1 0 0 0
1 0 0 −1
0 1 1 0









.

Eigenvalues of A are roots of its characteristic
polynomial

det(A − λI ) =

∣

∣

∣

∣

∣

∣

∣

∣

−λ −1 0 0
1 −λ 0 0
1 0 −λ −1
0 1 1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

.

Let us expand the determinant by the 1st row.



Expand the determinant by the 1st row:

det(A − λI ) = −λ

∣

∣

∣

∣

∣

∣

−λ 0 0
0 −λ −1
1 1 −λ

∣

∣

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

∣

∣

1 0 0
1 −λ −1
0 1 −λ

∣

∣

∣

∣

∣

∣

.

Expand both 3×3 determinants by the 1st row:

det(A − λI ) = (−λ)2

∣

∣

∣

∣

−λ −1
1 −λ

∣

∣

∣

∣

+

∣

∣

∣

∣

−λ −1
1 −λ

∣

∣

∣

∣

.

= λ2(λ2 + 1) + (λ2 + 1) = (λ2 + 1)2.

Since there are no real eigenvalues, A is not
diagonalizable in R

4. How about C
4?

det(A − λI ) = (λ2 + 1)2 = (λ − i)2(λ + i)2.

The eigenvalues are i and −i .



One can show that both eigenspaces of A are one-dimensional.
The eigenspace for i is spanned by (0, 0, i , 1) and the
eigenspace for −i spanned by (0, 0,−i , 1). It follows that the
matrix A is not diagonalizable in C

4.

There is also an indirect way to show that A is not
diagonalizable in C

4. Assume the contrary. Then
A = UXU−1, where U is an invertible matrix with complex
entries and

X =









i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i









(note that X should have the same characteristic polynomial
as A). This would imply that A2 = UX 2U−1. But X 2 = −I

so that A2 = U(−I )U−1 = −I .

One can easily check that, in fact, A2 6= −I .


