MATH 423
 Linear Algebra II

Lecture 23:

Diagonalization (continued).
The Cayley-Hamilton theorem.

Matrix polynomials

Definition. For any $n \times n$ matrix A and any polynomial

$$
\begin{aligned}
p(x) & =c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m-1} x+c_{m} \\
\text { let } p(A) & =c_{0} A^{m}+c_{1} A^{m-1}+\cdots+c_{m-1} A+c_{m} I_{n}
\end{aligned}
$$

Theorem 1 If $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ then

$$
p(A)=\operatorname{diag}\left(p\left(s_{1}\right), p\left(s_{2}\right), \ldots, p\left(s_{n}\right)\right)
$$

Theorem 2 If $A=U B U^{-1}$, then
$p(A)=U p(B) U^{-1}$ for any polynomial $p(x)$.

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know from the previous lecture that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$.
Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.
We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

Proposition An eigenvector of a matrix A is also an eigenvector of any matrix polynomial $p(A)$. The associated eigenvalue for $p(A)$ is $p(\lambda)$, where λ is the eigenvalue for A.

Sketch of the proof: Suppose that $A \mathbf{v}=\lambda \mathbf{v}$, where $\mathbf{v} \neq \mathbf{0}$. Then $A^{k} \mathbf{v}=\lambda^{k} \mathbf{v}$ for $k=0,1,2, \ldots$
$\Longrightarrow p(A) \mathbf{v}=p(\lambda) \mathbf{v}$ for any polynomial $p(x)$.

Cayley-Hamilton Theorem Consider the

 characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$.Then $p(A)=O$.
Remark. Notice that $p(A) \neq \operatorname{det}(A-A I)!!!$

Characterizations of a direct sum

Suppose $V_{1}, V_{2}, \ldots, V_{k}$ are nontrivial subspaces of a vector space V and let $W=V_{1}+V_{2}+\cdots+V_{k}$.

Theorem The following conditions are equivalent:
(i) the subspaces $V_{1}, V_{2}, \ldots, V_{k}$ form a direct sum: $W=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}$;
(ii) if \mathbf{v}_{i} is any nonzero vector from V_{i} for $1 \leq i \leq k$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent vectors;
(iii) if S_{i} is any basis for $V_{i}, 1 \leq i \leq k$, then these bases are disjoint and the union $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a linearly independent set;
(iv) if S_{i} is any basis for $V_{i}, 1 \leq i \leq k$, then these bases are disjoint and the union $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a basis for W. In the case $\operatorname{dim} W<\infty$, there is one more equivalent condition: (v) $\operatorname{dim} W=\sum_{i=1}^{k} \operatorname{dim} V_{i}$.

How to find a basis of eigenvectors

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 The sum of the eigenspaces $\mathcal{E}_{\lambda_{1}}, \mathcal{E}_{\lambda_{2}}, \ldots, \mathcal{E}_{\lambda_{k}}$ of the operator L is direct.
Corollary 2 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be all eigenvalues of a linear operator $L: V \rightarrow V$. For any $1 \leq i \leq k$, let S_{i} be a basis for the eigenspace $\mathcal{E}_{\lambda_{i}}$. Then these bases are disjoint and the union $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a linearly independent set. Moreover, L is diagonalizable if and only if S is a basis for V.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct roots. Then (i) there is a basis for \mathbb{F}^{n} consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Example. $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Characteristic equation:

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & -1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|=0
$$

Expand the determinant by the 3rd row:

$$
(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=0
$$

$\left((1-\lambda)^{2}-1\right)(2-\lambda)=0 \Longleftrightarrow-\lambda(2-\lambda)^{2}=0$
$\Longrightarrow \lambda_{1}=0, \quad \lambda_{2}=2$.

$$
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Convert the matrix to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A \mathbf{x}=\mathbf{0}
\end{gathered} \Longleftrightarrow\left\{\begin{array}{l}
x+y=0, \\
z=0 .
\end{array}\right.
$$

The general solution is $(-t, t, 0)=t(-1,1,0)$, $t \in \mathbb{R}$. Thus $\mathbf{v}_{1}=(-1,1,0)$ is an eigenvector associated with the eigenvalue 0 . The corresponding eigenspace is the line spanned by \mathbf{v}_{1}.
$(A-2 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\Longleftrightarrow\left(\begin{array}{rrr}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Longleftrightarrow x-y+z=0$.
The general solution is $x=t-s, y=t, \quad z=s$, where $t, s \in \mathbb{R}$. Equivalently,

$$
\mathbf{x}=(t-s, t, s)=t(1,1,0)+s(-1,0,1)
$$

Thus $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$ are eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned by \mathbf{v}_{2} and \mathbf{v}_{3}.

Summary. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace \mathcal{E}_{0} is one-dimensional; it has a basis
$S_{1}=\left\{\mathbf{v}_{1}\right\}$, where $\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace \mathcal{E}_{2} is two-dimensional; it has a basis
$S_{2}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{2}=(1,1,0), \mathbf{v}_{3}=(-1,0,1)$.
- The union $S_{1} \cup S_{2}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Example. $A=\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$.
Eigenvalues of A are roots of its characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rrrr}
-\lambda & -1 & 0 & 0 \\
1 & -\lambda & 0 & 0 \\
1 & 0 & -\lambda & -1 \\
0 & 1 & 1 & -\lambda
\end{array}\right|
$$

Let us expand the determinant by the 1st row.

Expand the determinant by the 1st row:

$$
\operatorname{det}(A-\lambda I)=-\lambda\left|\begin{array}{rrr}
-\lambda & 0 & 0 \\
0 & -\lambda & -1 \\
1 & 1 & -\lambda
\end{array}\right|-(-1)\left|\begin{array}{rrr}
1 & 0 & 0 \\
1 & -\lambda & -1 \\
0 & 1 & -\lambda
\end{array}\right| .
$$

Expand both 3×3 determinants by the 1 st row:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=(-\lambda)^{2}\left|\begin{array}{rr}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right|+\left|\begin{array}{rr}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right| \\
& \quad=\lambda^{2}\left(\lambda^{2}+1\right)+\left(\lambda^{2}+1\right)=\left(\lambda^{2}+1\right)^{2}
\end{aligned}
$$

Since there are no real eigenvalues, A is not diagonalizable in \mathbb{R}^{4}. How about \mathbb{C}^{4} ?

$$
\operatorname{det}(A-\lambda I)=\left(\lambda^{2}+1\right)^{2}=(\lambda-i)^{2}(\lambda+i)^{2}
$$

The eigenvalues are i and $-i$.

One can show that both eigenspaces of A are one-dimensional. The eigenspace for i is spanned by $(0,0, i, 1)$ and the eigenspace for $-i$ spanned by $(0,0,-i, 1)$. It follows that the matrix A is not diagonalizable in \mathbb{C}^{4}.

There is also an indirect way to show that A is not diagonalizable in \mathbb{C}^{4}. Assume the contrary. Then $A=U X U^{-1}$, where U is an invertible matrix with complex entries and

$$
X=\left(\begin{array}{rrrr}
i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i
\end{array}\right)
$$

(note that X should have the same characteristic polynomial as A). This would imply that $A^{2}=U X^{2} U^{-1}$. But $X^{2}=-I$ so that $A^{2}=U(-I) U^{-1}=-I$.
One can easily check that, in fact, $A^{2} \neq-1$.

