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Lecture 24:

Multiple eigenvalues.

Invariant subspaces.

Markov chains.



Example. A =









0 −1 0 0
1 0 0 0
1 0 0 −1
0 1 1 0









.

Characteristic polynomial:

det(A − λI ) = (λ2 + 1)2 = (λ − i)2(λ + i)2.

The eigenvalues are i and −i . Both eigenspaces of
A are one-dimensional. The eigenspace for i is
spanned by (0, 0, i , 1) and the eigenspace for −i

spanned by (0, 0,−i , 1).

It follows that the matrix A is not diagonalizable in
C

4.



There is also an indirect way to show that A is not
diagonalizable in C

4. Assume the contrary. Then
A = UXU−1, where U is an invertible matrix with
complex entries and

X =









i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i









(note that X should have the same characteristic
polynomial as A). This would imply that
A2 = UX 2U−1. But X 2 = −I so that
A2 = U(−I )U−1 = −I .

Let us check if A2 = −I .



A2 =









0 −1 0 0
1 0 0 0
1 0 0 −1
0 1 1 0









2

=









−1 0 0 0
0 −1 0 0
0 −2 −1 0
2 0 0 −1









.

Since A2 6= −I , the matrix A is not diagonalizable
in C

4.

Remark. Note however that (A2 + I )2 = O (this is
an instance of the Cayley-Hamilton Theorem).



Multiple eigenvalues

Definition. Suppose λ is an eigenvalue of a matrix A. The
multiplicity (or algebraic multiplicity) of this eigenvalue is
its multiplicity as a root of the characteristic polynomial of A.
The geometric multiplicity of λ is the dimension of the
associated eigenspace.

Theorem 1 Geometric multiplicity of an eigenvalue cannot
exceed its algebraic multiplicity.

Theorem 2 A square matrix is diagonalizable if and only if
the following conditions are satisfied:
• the characteristic polynomial splits into factors of degree 1;
• the geometric multiplicity of each eigenvalue matches its
algebraic multiplicity.



Invariant subspaces

Let L : V → V be a linear operator on a vector space V .
Suppose W is a subspace of V . We say that the subspace W

is invariant under the operator L (or that W is an invariant

subspace of L) if L(W ) ⊂ W .

If W is an invariant subspace of L, then the restriction of the
operator L to W , denoted L|W , can be regarded as an
operator on W .

Example. Consider the vector space P of all polynomials, its
subspace Pn (polynomials of degree at most n), and three
operators L1, L2, L3 on P given by

• (L1p)(x) = p′(x),
• (L2p)(x) = p(x + 1),
• (L3p)(x) = xp(x)

for any polynomial p ∈ P. Then the subspace Pn is invariant
under operators L1 and L2, but not invariant under L3.



Suppose L : V → V is a linear operator on an n-dimensional
vector space V and W is an m-dimensional subspace of V

that is invariant under L.

Let β = [v1, . . . , vm] be a basis for W and vm+1, . . . , vn be
vectors that extend this basis to a basis for V (denoted α).

Theorem 1 The matrix A of the operator L relative to the
basis α is a block matrix of the form

A =

(

B C

O D

)

,

where O is the (n − m)×m zero matrix and B is the matrix
of the restriction L|W relative to the basis β.

Theorem 2 Using notation of the previous theorem,
det(A) = det(B) det(D). Moreover,
det(A− λIn) = det(B − λIm) det(D − λIn−m) for any scalar λ.

Corollary The characteristic polynomial of the restriction
L|W divides the characteristic polynomial of L.



Stochastic process

Stochastic (or random) process is a sequence of
experiments for which the outcome at any stage
depends on a chance.

Simple model:
• a finite number of possible outcomes (called
states);
• discrete time

Let S denote the set of the states. Then the
stochastic process is a sequence s0, s1, s2, . . . ,
where all sn ∈ S depend on chance.

How do they depend on chance?



Bernoulli scheme

Bernoulli scheme is a sequence of independent
random events.

That is, in the sequence s0, s1, s2, . . . any outcome
sn is independent of the others.

For any integer n ≥ 0 we have a probability
distribution p(n) on S . This means that each state
s ∈ S is assigned a value p

(n)
s ≥ 0 so that

∑

s∈S p
(n)
s = 1. Then the probability of the event

sn = s is p
(n)
s .

The Bernoulli scheme is called stationary if the
probability distributions p(n) do not depend on n.



Examples of Bernoulli schemes:

• Coin tossing
2 states: heads and tails. Equal probabilities: 1/2.

• Die rolling
6 states. Uniform probability distribution: 1/6 each.

• Lotto Texas
Any state is a 6-element subset of the set
{1, 2, . . . , 54}. The total number of states is
25, 827, 165. Uniform probability distribution.



Markov chain

Markov chain is a stochastic process with discrete
time such that the probability of the next outcome
depends only on the previous outcome.

Let S = {1, 2, . . . , k}. The Markov chain is

determined by transition probabilities p
(t)
ij ,

1 ≤ i , j ≤ k , t ≥ 0, and by the initial probability
distribution qi , 1 ≤ i ≤ k .

Here qi is the probability of the event s0 = i , and
p

(t)
ij is the conditional probability of the event

st+1 = j provided that st = i . By construction,
p

(t)
ij , qi ≥ 0,

∑

i qi = 1, and
∑

j p
(t)
ij = 1.



We shall assume that the Markov chain is
time-independent, i.e., transition probabilities do
not depend on time: p

(t)
ij = pij .

Then a Markov chain on S = {1, 2, . . . , k} is
determined by a probability vector

x0 = (q1, q2, . . . , qk) ∈ R
k and a k×k transition

matrix P = (pij). The entries in each row of P

add up to 1.

Let s0, s1, s2, . . . be the Markov chain. Then the
vector x0 determines the probability distribution of
the initial state s0.

Problem. Find the (unconditional) probability
distribution for any sn.


