MATH 423
 Linear Algebra II

Lecture 25:
Markov chains (continued).
The Cayley-Hamilton theorem (continued).

Markov chain

Stochastic (or random) process is a sequence of experiments for which the outcome at any stage depends on a chance.

We consider a simple model, with a finite set S of possible outcomes (called states) and discrete time. Then the stochastic process is a sequence $s_{0}, s_{1}, s_{2}, \ldots$, where all $s_{n} \in S$ depend on chance.

Markov chain is a stochastic process with discrete time such that the probability of the next outcome depends only on the previous outcome.

Let $S=\{1,2, \ldots, k\}$. The Markov chain is determined by transition probabilities $p_{i j}^{(t)}, 1 \leq i, j \leq k, t \geq 0$, and by the initial probability distribution $q_{i}, 1 \leq i \leq k$.
Here q_{i} is the probability of the event $s_{0}=i$, and $p_{i j}^{(t)}$ is the conditional probability of the event $s_{t+1}=j$ provided that $s_{t}=i$. By construction, $p_{i j}^{(t)}, q_{i} \geq 0, \sum_{i} q_{i}=1$, and $\sum_{j} p_{i j}^{(t)}=1$.

We shall assume that the Markov chain is time-independent, i.e., transition probabilities do not depend on time: $p_{i j}^{(t)}=p_{i j}$.

Then a Markov chain on $S=\{1,2, \ldots, k\}$ is determined by a probability vector $\mathbf{x}_{0}=\left(q_{1}, q_{2}, \ldots, q_{k}\right) \in \mathbb{R}^{k}$ and a $k \times k$ transition matrix $P=\left(p_{i j}\right)$. The entries in each row of P add up to 1 .

Example: random walk

Transition matrix: $P=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2 \\ 1 & 0 & 0\end{array}\right)$

Problem. Find the (unconditional) probability distribution for any $s_{n}, n \geq 1$.
The probability distribution of s_{n-1} is given by a probability vector $\mathbf{x}_{n-1}=\left(a_{1}, \ldots, a_{k}\right)$. The probability distribution of s_{n} is given by a vector $\mathbf{x}_{n}=\left(b_{1}, \ldots, b_{k}\right)$.
We have

$$
b_{j}=a_{1} p_{1 j}+a_{2} p_{2 j}+\cdots+a_{k} p_{k j}, \quad 1 \leq j \leq k
$$

That is,

$$
\left(b_{1}, \ldots, b_{k}\right)=\left(a_{1}, \ldots, a_{k}\right)\left(\begin{array}{ccc}
p_{11} & \ldots & p_{1 k} \\
\vdots & \ddots & \vdots \\
p_{k 1} & \ldots & p_{k k}
\end{array}\right)
$$

$\mathbf{x}_{n}=\mathbf{x}_{n-1} P \Longrightarrow \mathbf{x}_{n}^{t}=\left(\mathbf{x}_{n-1} P\right)^{t}=P^{t} \mathbf{x}_{n-1}^{t}$.
Thus $\mathbf{x}_{n}^{t}=Q \mathbf{x}_{n-1}^{t}$, where $Q=P^{t}$ and the vectors are regarded as row vectors.
Then $\mathbf{x}_{n}^{t}=Q \mathbf{x}_{n-1}^{t}=Q\left(Q \mathbf{x}_{n-2}^{t}\right)=Q^{2} \mathbf{x}_{n-2}^{t}$.
Similarly, $\mathbf{x}_{n}^{t}=Q^{3} \mathbf{x}_{n-3}^{t}$, and so on.
Finally, $\mathbf{x}_{n}^{t}=Q^{n} \mathbf{x}_{0}^{t}$.

Example. Very primitive weather model:
Two states: "sunny" (1) and "rainy" (2).
Transition matrix: $P=\left(\begin{array}{cc}0.9 & 0.1 \\ 0.5 & 0.5\end{array}\right)$.
Suppose that $\mathbf{x}_{0}=(1,0)$ (sunny weather initially).
Problem. Make a long-term weather prediction.
The probability distribution of weather for day n is given by the vector $\mathbf{x}_{n}^{t}=Q^{n} \mathbf{x}_{0}^{t}$, where $Q=P^{t}$.
To compute Q^{n}, we need to diagonalize the matrix $Q=\left(\begin{array}{ll}0.9 & 0.5 \\ 0.1 & 0.5\end{array}\right)$.
$\operatorname{det}(Q-\lambda I)=\left|\begin{array}{cc}0.9-\lambda & 0.5 \\ 0.1 & 0.5-\lambda\end{array}\right|=$

$$
=\lambda^{2}-1.4 \lambda+0.4=(\lambda-1)(\lambda-0.4) .
$$

Two eigenvalues: $\lambda_{1}=1, \lambda_{2}=0.4$.
$(Q-I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rr}-0.1 & 0.5 \\ 0.1 & -0.5\end{array}\right)\binom{x}{y}=\binom{0}{0}$
$\Longleftrightarrow(x, y)=t(5,1), \quad t \in \mathbb{R}$.
$(Q-0.4 I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ll}0.5 & 0.5 \\ 0.1 & 0.1\end{array}\right)\binom{x}{y}=\binom{0}{0}$
$\Longleftrightarrow(x, y)=t(-1,1), \quad t \in \mathbb{R}$.
$\mathbf{v}_{1}=(5,1)^{t}$ and $\mathbf{v}_{2}=(-1,1)^{t}$ are eigenvectors of
Q belonging to eigenvalues 1 and 0.4 , respectively.

$$
\mathbf{x}_{0}^{t}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 5 \alpha - \beta = 1 } \\
{ \alpha + \beta = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\alpha=1 / 6 \\
\beta=-1 / 6
\end{array}\right.\right.
$$

Now $\mathbf{x}_{n}^{t}=Q^{n} \mathbf{x}_{0}^{t}=Q^{n}\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right)=$

$$
=\alpha\left(Q^{n} \mathbf{v}_{1}\right)+\beta\left(Q^{n} \mathbf{v}_{2}\right)=\alpha \mathbf{v}_{1}+(0.4)^{n} \beta \mathbf{v}_{2}
$$

which converges to the vector $\alpha \mathbf{v}_{1}=(5 / 6,1 / 6)^{t}$ as
$n \rightarrow \infty$.
The vector $\mathbf{x}_{\infty}=(5 / 6,1 / 6)$ gives the limit distribution. Also, it is a steady-state vector.

Remarks. In this example, the limit distribution does not depend on the initial distribution, but it is not always so. However 1 is always an eigenvalue of the matrix P (and hence $Q)$ since $P(1,1, \ldots, 1)^{t}=(1,1, \ldots, 1)^{t}$.

Multiplication of block matrices

Theorem Suppose that matrices X and Y are represented as block matrices: $X=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right), Y=\left(\begin{array}{cc}P & Q \\ R & S\end{array}\right)$.
Then $X Y=\left(\begin{array}{ll}A P+B R & A Q+B S \\ C P+D R & C Q+D S\end{array}\right)$ provided that all matrix products are well defined.

Corollary 1 Suppose that $(m+n) \times(m+n)$ matrices X and Y are represented as block matrices:

$$
X=\left(\begin{array}{cc}
A & U \\
O & B
\end{array}\right), \quad Y=\left(\begin{array}{cc}
A_{1} & U_{1} \\
O & B_{1}
\end{array}\right)
$$

where A and A_{1} are $m \times m$ matrices, B and B_{1} are $n \times n$ matrices, and O is the $n \times m$ zero matrix. Then $X Y=\left(\begin{array}{cc}A A_{1} & U_{2} \\ O & B B_{1}\end{array}\right)$ for some $m \times n$ matrix U_{2}.

Corollary 2 Suppose that a square matrix X is represented as a block matrix: $X=\left(\begin{array}{cc}A & U \\ O & B\end{array}\right)$, where A and B are square matrices and O is a zero matrix. Then for any polynomial $p(x)$ we have $p(X)=\left(\begin{array}{cc}p(A) & U_{p} \\ O & p(B)\end{array}\right)$, where the matrix U_{p} depends on p.

Corollary 3 Using notation of Corollary 2, if $p_{1}(A)=O$ and $p_{2}(B)=O$ for some polynomials p_{1} and p_{2}, then $p(X)=O$, where $p(x)=p_{1}(x) p_{2}(x)$.

Proof: We have $p(X)=p_{1}(X) p_{2}(X)$. By Corollary 2,

$$
p_{1}(X)=\left(\begin{array}{cc}
O & U_{p_{1}} \\
O & p_{1}(B)
\end{array}\right), \quad p_{2}(X)=\left(\begin{array}{cc}
p_{2}(A) & U_{p_{2}} \\
O & O
\end{array}\right) .
$$

Multiplying these block matrices, we get the zero matrix.

Cayley-Hamilton Theorem

Theorem If A is a square matrix, then $p(A)=O$, where $p(x)$ is the characteristic polynomial of $A, p(\lambda)=\operatorname{det}(A-\lambda /)$.
Proof for a complex matrix A : The proof is by induction on the number n of rows in A. The base of induction is the case $n=1$. This case is trivial as $A=(a)$ and $p(x)=a-x$.
For the inductive step, we are to prove that the theorem holds for $n=k+1$ assuming it holds for $n=k$ (k any positive integer). Let a_{0} be any complex eigenvalue of A and \mathbf{v}_{0} a corresponding eigenvector. Then $p(x)=\left(a_{0}-x\right) p_{0}(x)$ for some polynomial p_{0}. Let us extend vector \mathbf{v}_{0} to a basis for $\mathbb{C}^{n}($ denoted $\alpha)$. We have $A=U X U^{-1}$, where U changes coordinates from α to the standard basis and X is a block matrix of the form $X=\left(\begin{array}{cc}a_{0} & C \\ O & B\end{array}\right)$.

Cayley-Hamilton Theorem

We have $A=U X U^{-1}$, where U changes coordinates from α to the standard basis and X is a block matrix of the form

$$
X=\left(\begin{array}{c|ccc}
a_{0} & c_{1} & \ldots & c_{k} \\
\hline 0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right) .
$$

The characteristic polynomial of X is p since the matrix X is similar to A. We know from the previous lecture that $p(x)=p_{1}(x) p_{2}(x)$, where p_{1} and p_{2} are characteristic polynomials of $\left(a_{1}\right)$ and B, resp. Since $p_{1}(x)=a_{0}-x$ and $p(x)=\left(a_{0}-x\right) p_{0}(x)$, we obtain $p_{2}(x)=p_{0}(x)$.
By the inductive assumption, $p_{0}(B)=O$. By Corollary 3, $p(X)=O$. Finally, $p(A)=U p(X) U^{-1}=U O U^{-1}=O$.

Example. $\quad A=\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
Characterictic polynomial:

$$
\begin{aligned}
& p(\lambda)=\operatorname{det}(A-\lambda I)=(2-\lambda)(1-\lambda)^{2} \\
& =(2-\lambda)\left(1-2 \lambda+\lambda^{2}\right)=2-5 \lambda+4 \lambda^{2}-\lambda^{3} .
\end{aligned}
$$

By the Cayley-Hamilton theorem,

$$
\begin{aligned}
& 2 I-5 A+4 A^{2}-A^{3}=0 \\
\Longrightarrow & \frac{1}{2} A\left(A^{2}-4 A+5 I\right)=I \\
\Longrightarrow & A^{-1}=\frac{1}{2}\left(A^{2}-4 A+5 I\right) .
\end{aligned}
$$

