MATH 423

Linear Algebra II
Lecture 26:
Review for Test 2.

Topics for Test 2

Elementary row operations (F/I/S 3.1-3.4)

- Elementary row operations
- Reduced row echelon form
- Solving systems of linear equations
- Computing the inverse matrix

Determinants ($F / I / S$ 4.1-4.5)

- Definition for 2×2 and 3×3 matrices
- Properties of determinants
- Row and column expansions
- Evaluation of determinants

Topics for Test 2

Eigenvalues and eigenvectors (F/I/S 5.1-5.4)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization, basis of eigenvectors
- Matrix polynomials
- Markov chains, limit distributions
- Cayley-Hamilton Theorem

Sample problems for Test 2

Problem 1 (20 pts.) Find a cubic polynomial $p(x)$ such that $p(-2)=0, p(-1)=4, p(1)=0$, and $p(2)=4$.

Problem 2 (25 pts.) Evaluate a determinant

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3}
\end{array}\right|
$$

For which values of parameters $c_{1}, c_{2}, c_{3}, c_{4}$ is this determinant equal to zero?

Sample problems for Test 2

Problem 3 (20 pts.) Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Find all eigenvalues of the matrix A^{3}.

Problem 4 (25 pts.) Let $B=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$. Find a matrix C such that $C^{2}=B^{2}$, but $C \neq \pm B$.

Sample problems for Test 2

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Let X be a square matrix that can be represented as a block matrix

$$
X=\left(\begin{array}{ll}
A & C \\
O & B
\end{array}\right)
$$

where A and B are square matrices and O is a zero matrix. Prove that $\operatorname{det}(X)=\operatorname{det}(A) \operatorname{det}(B)$.

Problem 1. Find a cubic polynomial $p(x)$ such that $p(-2)=0, p(-1)=4, p(1)=0$, and $p(2)=4$.

Let $p(x)=a+b x+c x^{2}+d x^{3}$. Then

$$
\begin{aligned}
& p(-2)=a-2 b+4 c-8 d, \\
& p(-1)=a-b+c-d, \\
& p(1)=a+b+c+d, \\
& p(2)=a+2 b+4 c+8 d .
\end{aligned}
$$

The coefficients a, b, c, and d are to be chosen so that

$$
\left\{\begin{array}{l}
a-2 b+4 c-8 d=0, \\
a-b+c-d=4, \\
a+b+c+d=0, \\
a+2 b+4 c+8 d=4 .
\end{array}\right.
$$

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row echelon form using elementary row operations.

$$
\begin{aligned}
& \left(\begin{array}{rrrr|r}
1 & -2 & 4 & -8 & 0 \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
1 & -1 & 1 & -1 & 4 \\
1 & -2 & 4 & -8 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & -2 & 0 & -2 & 4 \\
1 & -2 & 4 & -8 & 0 \\
1 & 2 & 4 & 8 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & -2 & 0 & -2 & 4 \\
0 & -3 & 3 & -9 & 0 \\
0 & 1 & 3 & 7 & 4
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 1 & -1 & 3 & 0 \\
0 & 1 & 3 & 7 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & -1 & 2 & 2 \\
0 & 0 & 3 & 6 & 6
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & 1 & -2 & -2 \\
0 & 0 & 1 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & 1 & -2 & -2 \\
0 & 0 & 0 & 4 & 4
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & 1 & -2 & -2 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{llll|r}
1 & 1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll|r}
1 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \text {. }
\end{aligned}
$$

It follows that $a=2, b=-3, c=0$, and $d=1$.
Thus $p(x)=x^{3}-3 x+2$.

Problem 2. Evaluate a determinant
$\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ c_{1} & c_{2} & c_{3} & c_{4} \\ c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\ c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3}\end{array}\right|$.

For which values of parameters $c_{1}, c_{2}, c_{3}, c_{4}$ is this determinant equal to zero?

Let d denote the value of the determinant. To find d, we use a nonstandard row reduction. We subtract c_{1} times the 3 rd row from the 4 th row, then subtract c_{1} times the 2 nd row from the 3 rd row, then subtract c_{1} times the 1 st row from the 2nd row:

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} & c_{4} \\
c_{1}^{2} & c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3}
\end{array}\right|=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & c_{2}-c_{1} & c_{3}-c_{1} & c_{4}-c_{1} \\
0 & c_{2}^{2}-c_{1} c_{2} & c_{3}^{2}-c_{1} c_{3} & c_{4}^{2}-c_{1} c_{4} \\
0 & c_{2}^{3}-c_{1} c_{2}^{2} & c_{3}^{3}-c_{1} c_{3}^{2} & c_{4}^{3}-c_{1} c_{4}^{2}
\end{array}\right|
$$

The expansion by the first column yields

$$
d=\left|\begin{array}{ccc}
c_{2}-c_{1} & c_{3}-c_{1} & c_{4}-c_{1} \\
c_{2}^{2}-c_{1} c_{2} & c_{3}^{2}-c_{1} c_{3} & c_{4}^{2}-c_{1} c_{4} \\
c_{2}^{3}-c_{1} c_{2}^{2} & c_{3}^{3}-c_{1} c_{3}^{2} & c_{4}^{3}-c_{1} c_{4}^{2}
\end{array}\right| .
$$

Now there is a common factor in each column:

$$
\begin{aligned}
d & =\left|\begin{array}{ccc}
c_{2}-c_{1} & c_{3}-c_{1} & c_{4}-c_{1} \\
\left(c_{2}-c_{1}\right) c_{2} & \left(c_{3}-c_{1}\right) c_{3} & \left(c_{4}-c_{1}\right) c_{4} \\
\left(c_{2}-c_{1}\right) c_{2}^{2} & \left(c_{3}-c_{1}\right) c_{3}^{2} & \left(c_{4}-c_{1}\right) c_{4}^{2}
\end{array}\right| \\
& =\left(c_{2}-c_{1}\right)\left(c_{3}-c_{1}\right)\left(c_{4}-c_{1}\right)\left|\begin{array}{ccc}
1 & 1 & 1 \\
c_{2} & c_{3} & c_{4} \\
c_{2}^{2} & c_{3}^{2} & c_{4}^{2}
\end{array}\right| .
\end{aligned}
$$

The latter determinant is evaluated using the same technique as before. Eventually we get

$$
d=\left(c_{2}-c_{1}\right)\left(c_{3}-c_{1}\right)\left(c_{4}-c_{1}\right)\left(c_{3}-c_{2}\right)\left(c_{4}-c_{2}\right)\left(c_{4}-c_{3}\right) .
$$

The determinant is equal to zero if and only if the numbers $c_{1}, c_{2}, c_{3}, c_{4}$ are not all distinct.

Problem 3. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. We obtain that

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right| \\
=(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda)=(1-\lambda)\left((1-\lambda)^{2}-4\right) \\
=(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{gathered}
$$

Hence the matrix A has three eigenvalues: $-1,1$, and 3 .

Problem 3. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)$ of the matrix A associated with an eigenvalue λ is a nonzero solution of the vector equation

$$
(A-\lambda /) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

To solve the equation, we convert the matrix $A-\lambda I$ to reduced row echelon form.

First consider the case $\lambda=-1$. The row reduction yields

$$
\begin{gathered}
A+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \\
\rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A+I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)$ is an eigenvector of A associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields
$A-I=\left(\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Hence

$$
(A-I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-t, y=0, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)$ is an eigenvector of A associated with the eigenvalue 1 .

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{gathered}
A-3 \left\lvert\,=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right)\right. \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A-3 /) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)$ is an eigenvector of A associated with the eigenvalue 3 .

Problem 3. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iii) Find all eigenvalues of the matrix A^{3}.

Suppose that \mathbf{v} is an eigenvector of the matrix A associated with an eigenvalue λ, that is, $\mathbf{v} \neq \mathbf{0}$ and $A \mathbf{v}=\lambda \mathbf{v}$. Then

$$
\begin{gathered}
A^{2} \mathbf{v}=A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \mathbf{v})=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v} \\
A^{3} \mathbf{v}=A\left(A^{2} \mathbf{v}\right)=A\left(\lambda^{2} \mathbf{v}\right)=\lambda^{2}(A \mathbf{v})=\lambda^{2}(\lambda \mathbf{v})=\lambda^{3} \mathbf{v}
\end{gathered}
$$

Therefore \mathbf{v} is also an eigenvector of the matrix A^{3} and the associated eigenvalue is λ^{3}. We already know that the matrix A has eigenvalues $-1,1$, and 3 . It follows that A^{3} has eigenvalues $-1,1$, and 27 .

It remains to notice that a 3×3 matrix can have at most 3 eigenvalues.

Problem 4. Let $B=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$. Find a matrix C such that $C^{2}=B^{2}$, but $C \neq \pm B$.

This problem is simple in the case B is diagonal. Indeed, if $B=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, where $a, b \neq 0$, then we can take

$$
C=\left(\begin{array}{rr}
-a & 0 \\
0 & b
\end{array}\right) \quad \text { or } \quad C=\left(\begin{array}{rr}
a & 0 \\
0 & -b
\end{array}\right) .
$$

Therefore the diagonalization of the matrix B might help. The characteristic polynomial of B is

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 3 \\
1 & 4-\lambda
\end{array}\right|=(2-\lambda)(4-\lambda)-3 \\
=\lambda^{2}-6 \lambda+5=(\lambda-1)(\lambda-5)
\end{gathered}
$$

The eigenvalues are 1 and 5 .

An eigenvector for the eigenvalue 1 is $\mathbf{v}_{1}=(-3,1)$.
An eigenvector for the eigenvalue 5 is $\mathbf{v}_{2}=(1,1)$.
The vectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}. It follows that $B=U D U^{-1}$, where

$$
D=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right), \quad U=\left(\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right) .
$$

Now we let $C=U P U^{-1}$, where $P=\left(\begin{array}{rr}-1 & 0 \\ 0 & 5\end{array}\right)$.
By construction, $P^{2}=D^{2}$ and $P \neq \pm D$. Since $C^{2}=U P U^{-1} U P U^{-1}=U P^{2} U^{-1}$ and, similarly, $B^{2}=U D^{2} U^{-1}$, we obtain that $C^{2}=B^{2}$ and $C \neq \pm B$.

It remains to compute the matrix C :
$C=U P U^{-1}=\left(\begin{array}{rr}-3 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{rr}-1 & 0 \\ 0 & 5\end{array}\right)\left(\begin{array}{rr}-3 & 1 \\ 1 & 1\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ll}1 & 9 \\ 3 & 7\end{array}\right)$.

Bonus Problem 5. Let X be a square matrix that can be represented as a block matrix $X=\left(\begin{array}{cc}A & C \\ O & B\end{array}\right)$, where A and B are square matrices and O is a zero matrix. Prove that $\operatorname{det}(X)=\operatorname{det}(A) \operatorname{det}(B)$.

Consider block matrices $Y=\left(\begin{array}{ll}I & C \\ O & B\end{array}\right), Z=\left(\begin{array}{cc}A & O^{\prime} \\ O & I^{\prime}\end{array}\right)$, where I and I^{\prime} are identity matrices and O^{\prime} is a zero matrix. Multiplying Y and Z as block matrices, we obtain

$$
Y Z=\left(\begin{array}{cc}
I A+C O & I O^{\prime}+C I^{\prime} \\
O A+B O & O O^{\prime}+B I^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
A & C \\
O & B
\end{array}\right)=X .
$$

As a consequence, $\operatorname{det}(X)=\operatorname{det}(Y) \operatorname{det}(Z)$.
It remains to show that $\operatorname{det}(Y)=\operatorname{det}(B)$ and $\operatorname{det}(Z)=\operatorname{det}(A)$.
The first equality is established by repeatedly expanding the determinant of Y along the first column. To get the second equality, we expand the determinant of Z along the last row.

