
MATH 423

Linear Algebra II

Lecture 26:
Review for Test 2.



Topics for Test 2

Elementary row operations (F/I/S 3.1–3.4)

• Elementary row operations
• Reduced row echelon form
• Solving systems of linear equations
• Computing the inverse matrix

Determinants (F/I/S 4.1–4.5)

• Definition for 2×2 and 3×3 matrices
• Properties of determinants
• Row and column expansions
• Evaluation of determinants



Topics for Test 2

Eigenvalues and eigenvectors (F/I/S 5.1–5.4)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Diagonalization, basis of eigenvectors
• Matrix polynomials
• Markov chains, limit distributions
• Cayley-Hamilton Theorem



Sample problems for Test 2

Problem 1 (20 pts.) Find a cubic polynomial
p(x) such that p(−2) = 0, p(−1) = 4, p(1) = 0,
and p(2) = 4.

Problem 2 (25 pts.) Evaluate a determinant
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For which values of parameters c1, c2, c3, c4 is this
determinant equal to zero?



Sample problems for Test 2

Problem 3 (20 pts.) Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated
eigenvector.
(iii) Find all eigenvalues of the matrix A3.

Problem 4 (25 pts.) Let B =

(

2 3
1 4

)

. Find a

matrix C such that C 2 = B2, but C 6= ±B .



Sample problems for Test 2

Bonus Problem 5 (15 pts.) Let X be a square
matrix that can be represented as a block matrix

X =

(

A C
O B

)

,

where A and B are square matrices and O is a zero
matrix. Prove that det(X ) = det(A) det(B).



Problem 1. Find a cubic polynomial p(x) such that
p(−2) = 0, p(−1) = 4, p(1) = 0, and p(2) = 4.

Let p(x) = a + bx + cx2 + dx3. Then

p(−2) = a − 2b + 4c − 8d ,
p(−1) = a − b + c − d ,
p(1) = a + b + c + d ,
p(2) = a + 2b + 4c + 8d .

The coefficients a, b, c , and d are to be chosen so that

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









a − 2b + 4c − 8d = 0,
a − b + c − d = 4,
a + b + c + d = 0,
a + 2b + 4c + 8d = 4.

This is a system of linear equations. To solve it, we convert
the augmented matrix to reduced row echelon form using
elementary row operations.
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1 −2 4 −8 0
1 −1 1 −1 4
1 1 1 1 0
1 2 4 8 4


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
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

1 1 1 1 0
1 −1 1 −1 4
1 −2 4 −8 0
1 2 4 8 4


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→
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
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

1 1 1 1 0
0 −2 0 −2 4
1 −2 4 −8 0
1 2 4 8 4


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1 1 1 1 0
0 −2 0 −2 4
0 −3 3 −9 0
0 1 3 7 4
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1 1 1 1 0
0 1 0 1 −2
0 1 −1 3 0
0 1 3 7 4
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
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1 1 1 1 0
0 1 0 1 −2
0 0 −1 2 2
0 0 3 6 6











→
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



1 1 1 1 0
0 1 0 1 −2
0 0 1 −2 −2
0 0 1 2 2




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

→
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



1 1 1 1 0
0 1 0 1 −2
0 0 1 −2 −2
0 0 0 4 4


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1 1 1 1 0
0 1 0 1 −2
0 0 1 −2 −2
0 0 0 1 1
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1 1 1 0 −1
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1




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
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



1 1 0 0 −1
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1




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1 0 0 0 2
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1









.

It follows that a = 2, b = −3, c = 0, and d = 1.
Thus p(x) = x3 − 3x + 2.



Problem 2. Evaluate a determinant
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For which values of parameters c1, c2, c3, c4 is this
determinant equal to zero?

Let d denote the value of the determinant. To find d , we use
a nonstandard row reduction. We subtract c1 times the 3rd
row from the 4th row, then subtract c1 times the 2nd row
from the 3rd row, then subtract c1 times the 1st row from the
2nd row:
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The expansion by the first column yields

d =
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Now there is a common factor in each column:

d =

∣
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The latter determinant is evaluated using the same technique
as before. Eventually we get

d = (c2 − c1)(c3 − c1)(c4 − c1)(c3 − c2)(c4 − c2)(c4 − c3).

The determinant is equal to zero if and only if the numbers
c1, c2, c3, c4 are not all distinct.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A − λI ) = 0. We obtain that

det(A − λI ) =

∣

∣

∣

∣

∣

∣

1 − λ 2 0
1 1 − λ 1
0 2 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 − 2(1 − λ) − 2(1 − λ) = (1 − λ)
(

(1 − λ)2 − 4
)

= (1 − λ)
(

(1 − λ) − 2
)(

(1 − λ) + 2
)

= −(λ − 1)(λ + 1)(λ − 3).

Hence the matrix A has three eigenvalues: −1, 1, and 3.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x , y , z) of the matrix A associated with
an eigenvalue λ is a nonzero solution of the vector equation

(A−λI )v = 0 ⇐⇒





1 − λ 2 0
1 1 − λ 1
0 2 1 − λ









x
y
z



 =





0
0
0



 .

To solve the equation, we convert the matrix A − λI to
reduced row echelon form.



First consider the case λ = −1. The row reduction yields

A + I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2





→





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(A + I )v = 0 ⇐⇒

{

x − z = 0,
y + z = 0.

The general solution is x = t, y = −t, z = t, where t ∈ R.
In particular, v1 = (1,−1, 1) is an eigenvector of A associated
with the eigenvalue −1.



Secondly, consider the case λ = 1. The row reduction yields

A − I =





0 2 0

1 0 1

0 2 0



 →





1 0 1

0 2 0

0 2 0



 →





1 0 1

0 1 0

0 2 0



 →





1 0 1

0 1 0

0 0 0



.

Hence

(A − I )v = 0 ⇐⇒

{

x + z = 0,
y = 0.

The general solution is x = −t, y = 0, z = t, where t ∈ R.
In particular, v2 = (−1, 0, 1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case λ = 3. The row reduction yields

A−3I =





−2 2 0
1 −2 1
0 2 −2



→





1 −1 0
1 −2 1
0 2 −2



→





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(A − 3I )v = 0 ⇐⇒

{

x − z = 0,
y − z = 0.

The general solution is x = t, y = t, z = t, where t ∈ R.
In particular, v3 = (1, 1, 1) is an eigenvector of A associated
with the eigenvalue 3.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(iii) Find all eigenvalues of the matrix A3.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue λ, that is, v 6= 0 and Av = λv. Then

A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v,

A3v = A(A2v) = A(λ2v) = λ2(Av) = λ2(λv) = λ3v.

Therefore v is also an eigenvector of the matrix A3 and the
associated eigenvalue is λ3. We already know that the matrix
A has eigenvalues −1, 1, and 3. It follows that A3 has
eigenvalues −1, 1, and 27.

It remains to notice that a 3 × 3 matrix can have at most 3
eigenvalues.



Problem 4. Let B =

(

2 3
1 4

)

. Find a matrix C such that

C 2 = B2, but C 6= ±B .

This problem is simple in the case B is diagonal. Indeed, if

B =

(

a 0
0 b

)

, where a, b 6= 0, then we can take

C =

(

−a 0
0 b

)

or C =

(

a 0
0 −b

)

.

Therefore the diagonalization of the matrix B might help.
The characteristic polynomial of B is

det(B − λI ) =

∣

∣

∣

∣

2 − λ 3
1 4 − λ

∣

∣

∣

∣

= (2 − λ)(4 − λ) − 3

= λ2 − 6λ + 5 = (λ − 1)(λ − 5).

The eigenvalues are 1 and 5.



An eigenvector for the eigenvalue 1 is v1 = (−3, 1).
An eigenvector for the eigenvalue 5 is v2 = (1, 1).
The vectors v1 and v2 form a basis for R

2. It follows that
B = UDU−1, where

D =

(

1 0
0 5

)

, U =

(

−3 1
1 1

)

.

Now we let C = UPU−1, where P =

(

−1 0
0 5

)

.

By construction, P2 = D2 and P 6= ±D. Since
C 2 = UPU−1UPU−1 = UP2U−1 and, similarly,
B2 = UD2U−1, we obtain that C 2 = B2 and C 6= ±B .

It remains to compute the matrix C :

C = UPU−1 =

(

−3 1
1 1

)(

−1 0
0 5

)(

−3 1
1 1

)

−1

=
1

2

(

1 9
3 7

)

.



Bonus Problem 5. Let X be a square matrix that can be

represented as a block matrix X =

(

A C
O B

)

, where A and

B are square matrices and O is a zero matrix. Prove that
det(X ) = det(A) det(B).

Consider block matrices Y =

(

I C
O B

)

, Z =

(

A O ′

O I ′

)

,

where I and I ′ are identity matrices and O ′ is a zero matrix.
Multiplying Y and Z as block matrices, we obtain

YZ =

(

IA + CO IO ′ + CI ′

OA + BO OO ′ + BI ′

)

=

(

A C
O B

)

= X .

As a consequence, det(X ) = det(Y ) det(Z ).

It remains to show that det(Y ) = det(B) and det(Z ) = det(A).
The first equality is established by repeatedly expanding the
determinant of Y along the first column. To get the second
equality, we expand the determinant of Z along the last row.


