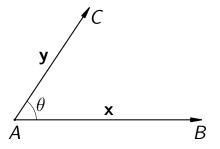
MATH 423 Linear Algebra II

Lecture 27: Norms and inner products.

Euclidean structure

In addition to the linear structure (addition and scaling), space \mathbb{R}^3 carries the Euclidean structure:

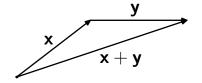
- length of a vector: |x|,
- ullet angle between vectors: heta,
- dot product: $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$.



Euclidean structure

Properties of vector length:

$$|\mathbf{x}| \geq 0$$
, $|\mathbf{x}| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $|r\mathbf{x}| = |r| |\mathbf{x}|$ (homogeneity) $|\mathbf{x} + \mathbf{y}| \leq |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality)



Euclidean structure

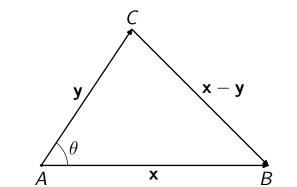
Properties of dot product:

$$\mathbf{x} \cdot \mathbf{x} \geq 0$$
, $\mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity)
 $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry)
 $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law)
 $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

Relations between lengths and dot products:

•
$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

•
$$\mathbf{x} \cdot \mathbf{y} = \frac{1}{2} (|\mathbf{x}|^2 + |\mathbf{y}|^2 - |\mathbf{x} - \mathbf{y}|^2)$$



Law of cosines:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| |\mathbf{y}| \cos \theta$$

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y}$$

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A function $\alpha : V \to \mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \geq 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{F}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

Positivity and homogeneity are obvious. Let ${\bf x} = (x_1, \dots, x_n)$ and ${\bf y} = (y_1, \dots, y_n)$. Then

$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $\mathbf{y} = (y_1, \dots, y_n)$. Then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$. $|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$

$$|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$$

$$\implies \max_j |x_j + y_j| \le \max_j |x_j| + \max_j |y_j|$$

$$\implies \|\mathbf{x} + \mathbf{y}\|_{\infty} \le \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}.$$

•
$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$$
.

Positivity and homogeneity are obvious. The triangle inequality: $|x_i + y_i| < |x_i| + |y_i|$

$$\implies \sum_{j} |x_j + y_j| \le \sum_{j} |x_j| + \sum_{j} |y_j|$$

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \quad p > 0.$

Remark. $\|\mathbf{x}\|_2 = \text{Euclidean length of } \mathbf{x}$.

Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \geq 1$.

Positivity and homogeneity are still obvious (and hold for any p > 0). The triangle inequality for $p \ge 1$ is known as the **Minkowski inequality**:

$$(|x_1 + y_1|^p + |x_2 + y_2|^p + \dots + |x_n + y_n|^p)^{1/p} \le \le (|x_1|^p + \dots + |x_n|^p)^{1/p} + (|y_1|^p + \dots + |y_n|^p)^{1/p}.$$

Normed vector space

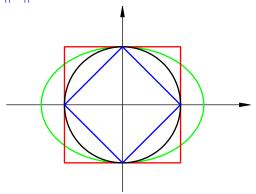
Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

Also, we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_0)$ is small.

Unit circle: $\|\mathbf{x}\| = 1$



$$\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$$
 black $\|\mathbf{x}\| = (\frac{1}{2}x_1^2 + x_2^2)^{1/2}$ green $\|\mathbf{x}\| = |x_1| + |x_2|$ blue $\|\mathbf{x}\| = \max(|x_1|, |x_2|)$ red

Theorem 1 Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^n . Then there exist positive constants c_1, c_2 such that

$$c_1 \|\mathbf{x}\|_2 \leq \|\mathbf{x}\| \leq c_2 \|\mathbf{x}\|_2$$
 for any $\mathbf{x} \in \mathbb{R}^n$.

Idea of the proof: One shows that the function $f(\mathbf{x}) = \|\mathbf{x}\|$ is continuous on \mathbb{R}^n (in the usual sense). Since the Euclidean unit sphere S^{n-1} (given by $\|\mathbf{x}\|_2 = 1$) is a closed bounded set, the function f attains its minimum and maximum values on S^{n-1} . These are c_1 and c_2 in the above inequalities.

Theorem 2 Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be arbitrary norms on a finite-dimensional vector space V. Then there exist positive constants c_1, c_2 such that

$$c_1 \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le c_2 \|\mathbf{x}\|_2$$
 for any $\mathbf{x} \in V$.

Corollary A sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ of vectors from V converges to a vector $\mathbf{x} \in V$ with respect to the distance induced by the norm $\|\cdot\|_1$ if and only if it converges to \mathbf{x} with respect to the distance induced by $\|\cdot\|_2$.

Examples. $V = C[a, b], f : [a, b] \to \mathbb{R}.$

$$\bullet \quad ||f||_{\infty} = \max_{a \le x \le b} |f(x)|.$$

•
$$||f||_1 = \int_a^b |f(x)| dx$$
.

$$\int_{a} |r(x)| dx.$$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.

Inner product: real vector space

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^3 .

Definition. Let V be a real vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x},\mathbf{y}) = \langle \mathbf{x},\mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$
.

- $\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$, where $d_1, d_2, \dots, d_n > 0$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$, where D is an invertible $n \times n$ matrix.

Remarks. (a) Invertibility of D is necessary to show that $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$.

(b) The second example is a particular case of the third one when $D = \operatorname{diag}(d_1^{1/2}, d_2^{1/2}, \dots, d_n^{1/2})$.

Example. $V = \mathcal{M}_{m,n}(\mathbb{R})$, space of $m \times n$ matrices.

•
$$\langle A, B \rangle = \operatorname{trace}(AB^t)$$
.

If $A = (a_{ij})$ and $B = (b_{ij})$, then $\langle A, B \rangle = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ij}$.

Examples. V = C[a, b].

•
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$
.

•
$$\langle f,g\rangle = \int_a^b f(x)g(x)w(x) dx$$
,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

w is called the **weight** function.