MATH 423
 Linear Algebra II

Lecture 27:
Norms and inner products.

Euclidean structure

In addition to the linear structure (addition and scaling), space \mathbb{R}^{3} carries the Euclidean structure:

- length of a vector: $|\mathbf{x}|$,
- angle between vectors: θ,
- dot product: $\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta$.

Euclidean structure

Properties of vector length:

$$
\begin{array}{lr}
|\mathbf{x}| \geq 0, \quad|\mathbf{x}|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
|r \mathbf{x}|=|r||\mathbf{x}| & \text { (homogeneity) } \\
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| & \text { (triangle inequality) }
\end{array}
$$

Euclidean structure

Properties of dot product:
$\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only if $\mathbf{x}=\mathbf{0} \quad$ (positivity)
$x \cdot y=y \cdot x$
(symmetry)
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(distributive law)
(homogeneity)
Relations between lengths and dot products:

- $|\mathbf{x}|=\sqrt{\mathbf{x \cdot x}}$
- $\mathbf{x} \cdot \mathbf{y}=\frac{1}{2}\left(|x|^{2}+|y|^{2}-|x-y|^{2}\right)$

Law of cosines:

$$
\begin{gathered}
|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2|\mathbf{x}||\mathbf{y}| \cos \theta \\
|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2 \mathbf{x} \cdot \mathbf{y}
\end{gathered}
$$

Norm

The notion of norm generalizes the notion of length of a vector in \mathbb{R}^{n}.

Definition. Let V be a vector space over \mathbb{F}, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. A function $\alpha: V \rightarrow \mathbb{R}$ is called a norm on V if it has the following properties:
(i) $\alpha(\mathbf{x}) \geq 0, \alpha(\mathbf{x})=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\alpha(r \mathbf{x})=|r| \alpha(\mathbf{x})$ for all $r \in \mathbb{F} \quad$ (homogeneity)
(iii) $\alpha(\mathbf{x}+\mathbf{y}) \leq \alpha(\mathbf{x})+\alpha(\mathbf{y}) \quad$ (triangle inequality)

Notation. The norm of a vector $\mathrm{x} \in \mathrm{V}$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_{1}$ and $\|\mathbf{x}\|_{2}$.

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$.

Positivity and homogeneity are obvious. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$. Then $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.

$$
\begin{aligned}
\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right| & \leq \max _{j}\left|x_{j}\right|+\max _{j}\left|y_{j}\right| \\
\Longrightarrow \max _{j}\left|x_{j}+y_{j}\right| & \leq \max _{j}\left|x_{j}\right|+\max _{j}\left|y_{j}\right| \\
\Longrightarrow\|\mathbf{x}+\mathbf{y}\|_{\infty} & \leq\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty} .
\end{aligned}
$$

- $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$.

Positivity and homogeneity are obvious.
The triangle inequality: $\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|$

$$
\Longrightarrow \quad \sum_{j}\left|x_{j}+y_{j}\right| \leq \sum_{j}\left|x_{j}\right|+\sum_{j}\left|y_{j}\right|
$$

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}, \quad p>0$.

Remark. $\|\mathbf{x}\|_{2}=$ Euclidean length of \mathbf{x}.
Theorem $\|\mathbf{x}\|_{p}$ is a norm on \mathbb{R}^{n} for any $p \geq 1$.
Positivity and homogeneity are still obvious (and hold for any $p>0$). The triangle inequality for $p \geq 1$ is known as the Minkowski inequality:
$\left(\left|x_{1}+y_{1}\right|^{p}+\left|x_{2}+y_{2}\right|^{p}+\cdots+\left|x_{n}+y_{n}\right|^{p}\right)^{1 / p} \leq$ $\leq\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}+\left(\left|y_{1}\right|^{p}+\cdots+\left|y_{n}\right|^{p}\right)^{1 / p}$.

Normed vector space

Definition. A normed vector space is a vector space endowed with a norm.
The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$.

Then we say that a sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Also, we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_{0} if $\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is small.

Unit circle: $\|x\|=1$

$$
\begin{aligned}
\|\mathbf{x}\| & =\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} & & \text { black } \\
\|\mathbf{x}\| & =\left(\frac{1}{2} x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} & & \text { green } \\
\|\mathbf{x}\| & =\left|x_{1}\right|+\left|x_{2}\right| & & \text { blue } \\
\|\mathbf{x}\| & =\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right) & & \text { red }
\end{aligned}
$$

Theorem 1 Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^{n}. Then there exist positive constants c_{1}, c_{2} such that

$$
c_{1}\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\| \leq c_{2}\|\mathbf{x}\|_{2} \text { for any } \mathbf{x} \in \mathbb{R}^{n} .
$$

Idea of the proof: One shows that the function $f(\mathbf{x})=\|\mathbf{x}\|$ is continuous on \mathbb{R}^{n} (in the usual sense). Since the Euclidean unit sphere S^{n-1} (given by $\|\mathbf{x}\|_{2}=1$) is a closed bounded set, the function f attains its minimum and maximum values on S^{n-1}. These are c_{1} and c_{2} in the above inequalities.

Theorem 2 Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be arbitrary norms on a finite-dimensional vector space V. Then there exist positive constants c_{1}, c_{2} such that

$$
c_{1}\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1} \leq c_{2}\|\mathbf{x}\|_{2} \text { for any } \mathbf{x} \in V .
$$

Corollary A sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ of vectors from V converges to a vector $\mathbf{x} \in V$ with respect to the distance induced by the norm $\|\cdot\|_{1}$ if and only if it converges to \mathbf{x} with respect to the distance induced by $\|\cdot\|_{2}$.

Examples. $\quad V=C[a, b], \quad f:[a, b] \rightarrow \mathbb{R}$.

- $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$.
- $\|f\|_{1}=\int_{a}^{b}|f(x)| d x$.
- $\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}, p>0$.

Theorem $\|f\|_{p}$ is a norm on $C[a, b]$ for any $p \geq 1$.

Inner product: real vector space

The notion of inner product generalizes the notion of dot product of vectors in \mathbb{R}^{3}.

Definition. Let V be a real vector space. A function $\beta: V \times V \rightarrow \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle$, is called an inner product on V if it is positive, symmetric, and bilinear. That is, if
(i) $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0,\langle\mathbf{x}, \mathbf{x}\rangle=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
(iii) $\langle r \mathbf{x}, \mathbf{y}\rangle=r\langle\mathbf{x}, \mathbf{y}\rangle$
(homogeneity)
(iv) $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle \quad$ (distributive law)

An inner product space is a vector space endowed with an inner product.

Examples. $\quad V=\mathbb{R}^{n}$.

- $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
- $\langle\mathbf{x}, \mathbf{y}\rangle=d_{1} x_{1} y_{1}+d_{2} x_{2} y_{2}+\cdots+d_{n} x_{n} y_{n}$, where $d_{1}, d_{2}, \ldots, d_{n}>0$.
- $\langle\mathbf{x}, \mathbf{y}\rangle=(D \mathbf{x}) \cdot(D \mathbf{y})$,
where D is an invertible $n \times n$ matrix.
Remarks. (a) Invertibility of D is necessary to show that $\langle\mathbf{x}, \mathbf{x}\rangle=0 \Longrightarrow \mathbf{x}=\mathbf{0}$.
(b) The second example is a particular case of the third one when $D=\operatorname{diag}\left(d_{1}^{1 / 2}, d_{2}^{1 / 2}, \ldots, d_{n}^{1 / 2}\right)$.

Example. $\quad V=\mathcal{M}_{m, n}(\mathbb{R})$, space of $m \times n$ matrices.

- $\langle A, B\rangle=\operatorname{trace}\left(A B^{t}\right)$.

If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then $\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} b_{i j}$.
Examples. $\quad V=C[a, b]$.

- $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$.
- $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x$,
where w is bounded, piecewise continuous, and $w>0$ everywhere on $[a, b]$.
w is called the weight function.

