MATH 423
Linear Algebra Il

Lecture 28:
Inner product spaces.



Norm

The notion of norm generalizes the notion of length
of a vector in R3.

Definition. Let V be a vector space over [, where
F=R or C. Afunction av:V — R is called a
norm on V if it has the following properties:

(i) a(x) >0, a(x) =0 only for x =0 (positivity)
(i) a(rx) =|rla(x) forall r € F (homogeneity)
(i) a(x+y) <a(x)+aly) (triangle inequality)

Notation. The norm of a vector x € V' is usually
denoted ||x||. Different norms on V are
distinguished by subscripts, e.g., ||x||1 and ||x]|».



Examples. V =TR", x = (x1,%,...,X,) € R".

i HXHOO = maX(|X1‘7 |X2‘7 ) |Xn‘)'

1
o Ixp=(pal’+ xl? + -+ x?)"", p>1.

Examples. V = Cla,b], f:[a, b] — R,

o [l = max [£(x)]

b 1/p
-Hﬂu:(/\amvw) .



Inner product: real vector space

The notion of inner product generalizes the notion
of dot product of vectors in R3.

Definition. Let V be a real vector space. A
function §: V x V — R, usually denoted

B(x,y) = (x,y), is called an inner product on V if
it is positive, symmetric, and bilinear. That is, if
(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) =(y,x) (symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+vy,z) =(x,z) + (y,z) (distributive law)

An inner product space is a vector space endowed
with an inner product.



Examples. V =R".
o (X,y) =X-y=x1y1+ X0+ + XpYn.

o (x,y) = dixiyi + doxoys + -+ + dpXnYn,
where di, d>, ..., d, > 0.

e (x,y) = (Dx)-(Dy),
where D is an invertible nxn matrix.

Example. 'V = M, ,(R), space of mxn matrices.

e (A, B) = trace(AB?).

If A= (aj) and B =(bj), then (A, B) =)>_>" ajbj.
i=1j=1



Examples. V = CJa, b].

o (Fig) = [ el o

. (f.g) = / F(x)g(x)w(x) dx,

where w is bounded, piecewise continuous, and
w > 0 everywhere on [a, b].

w is called the weight function.



Inner product: complex vector space

Definition. Let V be a complex vector space. A
function 6 :V x V — C, usually denoted

B(x,y) = (x,y), is called an inner product on V if
it is positive, conjugate symmetric, and depends
linearly on the first argument. That is, if

(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) = (y,x) (conjugate symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+vy,z) =(x,z) +(y,z) (distributive law)

Dependence on the second argument:
(x, ry + sz) = F(x,y) + 5(x, z).



Example. V = C".
o (X,y)=X1+X)2+ + XV

If z=r+1is, then Z=r—is, zz=r*>+s>=|z]°.
Therefore (x,x) = |x1|?> + |x2|® + -+ + |xJ|* > 0.

Also, (X,¥) =X1J1+  +XYn =X Y1+ + Xn ¥n
=Xiy1 4+ X Yo = (¥,X).

Examples. V = C([a, b],C).
o (fg) = [ g0 o

b
. (f.g) = / F(x)2 () w(x) dx,

where the weight function w is bounded, piecewise
continuous, and w > 0 everywhere on [a, b].



Theorem Suppose (x,y) is an inner product on a
vector space V. Then

[(x,¥)[? < (x,x){y,y) forall x,yeV.

Proof: Forany t € C let vi =x+ty. Then
(Vi,ve) = (X + ty,x + ty) = (x,x + ty) + t(y, x + ty)
= (x,x) + t(x,y) + t{y,x) + tt(y,y).

Assume that y # 0 and let t = _(x,y)I Then
{y.y)

[(x,y)[°
Ve, Vi) = (X, X) + t{y,x) = (X, X) — ———.
(v, ve) = (%, x) + t{y, x) = (X, ) 5y
Since (v¢,vy) > 0 the desired inequality follows.
In the case y =0, we have (x,y) = (y,y) =0.




Cauchy-Schwarz Inequality:

[, ¥)] < /(% %) \/(y, ).

Corollary 1 |x-y| < ||x|| [|y|| forall x,y € R".

Equivalently, for all x;, y; € R,
(xaya + - A xayn)® < OF + -+ x3) 0 + -+ yi)

Corollary 2 For any f,g € Cla, b,

(/ab( x)dx) /\f )2 dx - / () dx.



Norms induced by inner products

Theorem Suppose (x,y) is an inner product on a
vector space V. Then [|x|| = /(x,x) is a norm.

Proof: Positivity is obvious. Homogeneity:
x| = /T ) = /() = |rl /).
Triangle inequality (follows from Cauchy-Schwarz's):
Ix+yl? = (x+y,x+y) = (x,x+y)+(y,x+y)
= (%, %) + (x,y) + (¥, %) + (y,y)
= (x,x) +2Re(x,y) + (y,y)
< (% x) +2[(x,y)| + (y,y)
< [IxlI* + 2[x[ iyl + [lylI* = (lIx[l + llyll)*.




Examples. e The length of a vector in R”,
X[ = V/x§ 53 + -+,
is the norm induced by the dot product

X-y=X1y1 + X+ -+ Xp¥n.

b 1/2
e The norm [[f = (/ yf(x)\de> on the

vector space C|a, b] is induced by the inner product

(f.g) = | F(0gx) o



Angle

Since [(x,y)| <||x]|||y]|, we can define the angle
between nonzero vectors in any real vector space
with an inner product (and induced norm):

(x,y)
[Ix[[ [yll

Z(x,y) = arccos

Then (x,y) = [[x||lyl[ cos Z(x,y).

In particular, vectors x and y are orthogonal
(denoted x L y) if (x,y) =0.

In a complex inner product space the angle between
vectors is not defined. However the notion of
orthogonality still makes sense.



|

Pythagorean Law:
xLy = [x+yl*=[x]*+ |yl

Proof: ||x+y|*>= (x+y,x+Yy)
= (x,x) + (x,y) +(y,x) +(y.y)
= (x,x) + (y,y) = [Ix|]> + |ly||*>.



Parallelogram Identity:
Ix +ylI? + [[x — ylI> = 2[Ix]|* + 2[|y||?

Proof: ||x+y||* = (x+y,x+y) = (x,x) + (X, y) + (¥, %) + (y,y).

Similarly, [[x—y||*> = (x,x) — (x,y) — (¥, %) + (y,y).
Then |[x+y|? + [[x=y|I> = 2(x,x) + 2y, y) = 2||x||* + 2||y[]*.



Theorem 1 A norm on a vector space is induced by an inner
product if and only if the Parallelogram ldentity holds for this
norm.

Theorem 2 (Polarization ldentity) Suppose V is an inner
product space with an inner product (-, -) and the induced
norm || - ||.

(i) If V is a real vector space, then for any x,y € V,
1
(x,y) = 2 (Ix+ylI* = Ix = y]*).
(ii) If V is a complex vector space, then for any x,y € V,

1 . . . .
(x,y) = Z(Ix +ylI* = Ix = yII* + illx + iy ][ = illx = iy[|?)



