Lecture 28:

MATH 423

Linear Algebra II

Inner product spaces.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^3 .

Definition. Let V be a vector space over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A function $\alpha : V \to \mathbb{R}$ is called a **norm** on V if it has the following properties:

- (i) $\alpha(\mathbf{x}) \geq 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{F}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)
- Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

•
$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \ p \ge 1.$$

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

$$\bullet \|f\|_{\infty} = \max |f(x)|$$

$$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le b} |f(x)|.$$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$$

Inner product: real vector space

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^3 .

Definition. Let V be a real vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x},\mathbf{y}) = \langle \mathbf{x},\mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$
.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$$
, where $d_1, d_2, \dots, d_n > 0$.

• $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$, where D is an invertible $n \times n$ matrix.

Example. $V = \mathcal{M}_{m,n}(\mathbb{R})$, space of $m \times n$ matrices.

•
$$\langle A, B \rangle = \operatorname{trace}(AB^t)$$
.

If $A = (a_{ij})$ and $B = (b_{ij})$, then $\langle A, B \rangle = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij}$.

Examples. V = C[a, b].

•
$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$$
.

 J_a

• $\langle f, g \rangle = \int_a^b f(x)g(x)w(x) dx$, where w is bounded, piecewise continuous, and w > 0, everywhere on [a, b]

w > 0 everywhere on [a, b].

w is called the **weight** function

w is called the **weight** function.

Inner product: complex vector space

Definition. Let V be a complex vector space. A function $\beta: V \times V \to \mathbb{C}$, usually denoted $\beta(\mathbf{x},\mathbf{y}) = \langle \mathbf{x},\mathbf{y} \rangle$, is called an **inner product** on V if it is positive, conjugate symmetric, and depends linearly on the first argument. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (conjugate symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

Dependence on the second argument:

$$\langle \mathbf{x}, r\mathbf{y} + s\mathbf{z} \rangle = \overline{r} \langle \mathbf{x}, \mathbf{y} \rangle + \overline{s} \langle \mathbf{x}, \mathbf{z} \rangle.$$

Example. $V = \mathbb{C}^n$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n}$$
.
If $z = r + is$, then $\overline{z} = r - is$, $z\overline{z} = r^2 + s^2 = |z|^2$.

Therefore $\langle \mathbf{x}, \mathbf{x} \rangle = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \ge 0$.

Also,
$$\overline{\langle \mathbf{x}, \mathbf{y} \rangle} = \overline{x_1} \overline{y_1} + \dots + x_n \overline{y_n} = \overline{x_1} \overline{y_1} + \dots + \overline{x_n} \overline{y_n} = \overline{x_1} y_1 + \dots + \overline{x_n} y_n = \langle \mathbf{y}, \mathbf{x} \rangle.$$

Examples. $V = C([a, b], \mathbb{C}).$

•
$$\langle f,g\rangle = \int_a^b f(x)\overline{g(x)}\,dx.$$

• $\langle f,g\rangle = \int_{a}^{b} f(x)\overline{g(x)}w(x) dx$,

where the weight function w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle|^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$
 for all $\mathbf{x}, \mathbf{y} \in V$.

Proof: For any $t \in \mathbb{C}$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then

Proof: For any
$$t \in \mathbb{C}$$
 let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x} + t\mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} + t\mathbf{y} \rangle + t \langle \mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle$
$$= \langle \mathbf{x}, \mathbf{x} \rangle + \overline{t} \langle \mathbf{x}, \mathbf{y} \rangle + t \langle \mathbf{y}, \mathbf{x} \rangle + t \overline{t} \langle \mathbf{y}, \mathbf{y} \rangle.$$

Assume that $\mathbf{y} \neq \mathbf{0}$ and let $t = -\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle}$. Then

$$\langle \mathbf{y}, \mathbf{y}
angle \ \langle \mathbf{v}_t, \mathbf{v}_t
angle = \langle \mathbf{x}, \mathbf{x}
angle + t \langle \mathbf{y}, \mathbf{x}
angle = \langle \mathbf{x}, \mathbf{x}
angle - rac{|\langle \mathbf{x}, \mathbf{y}
angle|^2}{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$ the desired inequality follows. In the case $\mathbf{y} = \mathbf{0}$, we have $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{y} \rangle = 0$.

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| < ||\mathbf{x}|| \, ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Proof: Positivity is obvious. Homogeneity:

$$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r\overline{r}\langle \mathbf{x}, \mathbf{x} \rangle} = |r|\sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$\|\mathbf{x} + \mathbf{y}\|^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + 2 \operatorname{Re} \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2 |\langle \mathbf{x}, \mathbf{y} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\leq \|\mathbf{x}\|^{2} + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^{2} = (\|\mathbf{x}\| + \|\mathbf{y}\|)^{2}.$$

Examples. • The length of a vector in \mathbb{R}^n ,

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2},$$

is the norm induced by the dot product

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product

$$\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$$

Angle

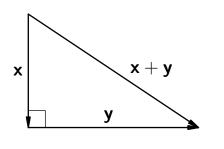
Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the **angle** between nonzero vectors in any real vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y}).$

In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

In a complex inner product space the angle between vectors is not defined. However the notion of orthogonality still makes sense.

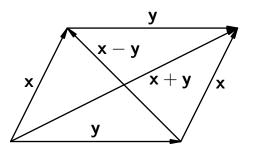


Pythagorean Law:

$$\mathbf{x} \perp \mathbf{y} \implies \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$



Parallelogram Identity:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$$

Similarly, $\|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$
Then $\|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$

Theorem 1 A norm on a vector space is induced by an inner product if and only if the Parallelogram Identity holds for this norm.

Theorem 2 (Polarization Identity) Suppose V is an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$.

(i) If V is a real vector space, then for any $\mathbf{x}, \mathbf{y} \in V$,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} (\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2).$$

(ii) If V is a complex vector space, then for any $\mathbf{x}, \mathbf{y} \in V$,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} (\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 + i\|\mathbf{x} + i\mathbf{y}\|^2 - i\|\mathbf{x} - i\mathbf{y}\|^2).$$