MATH 423
Linear Algebra Il

Lecture 29:
Orthogonal sets.



Orthogonality

Let V' be an inner product space with an inner
product (-, ).

Definition 1. Vectors x,y € V are said to be
orthogonal (denoted x L y) if |(x,y) =0.

Definition 2. A vector x € V is said to be
orthogonal to a nonempty set Y C V (denoted
x LY)if (x,y) =0 forany y e Y.

Definition 3. Nonempty sets X, Y C V are said to
be orthogonal (denoted X L Y) if (x,y) =0 for
any xe X and y e Y.



Orthogonal sets

Let V be an inner product space with an inner
product (-,-) and the induced norm |[|v|| = \/(v, V).

Definition. A nonempty set S C V is called an
orthogonal set if all vectors in S are mutually
orthogonal. That is, (x,y) =0 for any x,y € S,
X #y. An orthogonal set S C V is called
orthonormal if ||x|| =1 for any x € S.

Remark. Vectors vq,vo,...,vx € V form an
orthonormal set if and only if

Cf1ifi=]
<"”"J>_{o if i J.



Examples. o V =R" (x,y) =x"Yy.

The standard basis e; = (1,0,0,...,0),

e, =(0,1,0,...,0), ..., e, = (0,0,0,...,1).
It is an orthonormal set.

o V=R3 (x,y)=x
= (3,5,4), v, = (3, 54) vs = (4,0, —3).

vl-v2:O, vi-v3=0, wvy-v3=0,
V1°V1:50, V2°V2:50, V3'V3:25.

Thus the set {vi,v,,v3} is orthogonal but not
orthonormal. An orthonormal set is formed by

normalized vectors w; = IIEII' Wy = 2;
V3

vl
lvs[”

W3 =



o V=C_C[-mm], (f,g)z/w f(x)g(x) dx.

—T

fi(x) =sinx, f(x) =sin2x, ..., f,(x) =sinnx, ...

@ T if m=n
(i, fo) = / sin(mx) sin(nx) dx = { 0 if mn.

Thus the set {f, f, f5,...} is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner
product

(f.g) = %/W f(x)g(x) dx.

—T



o V=Cllmal.O), (fg) =5 [ )80 ox.
ho(x) = ™, n € 7.
hal()

x) = cos(nx) + i sin(nx),

h,(x) = cos(nx) — isin(nx) = e=™ = h_,(x).

O 1

<hm7 h > 27[_ / eImX e dx = % B elmXe—/nx dx
= i § l(m n)x dX — 1 |f m=n,
2m 0 if m#n.

Thus the functions ..., h_5, h_1, hy, hy, hy, ... form
an orthonormal set. One can show that this is a
maximal orthonormal set in C([—m, 7], C).



Orthogonality — linear independence

Theorem Suppose vi,Vy, ...,V are nonzero
vectors that form an orthogonal set. Then
V1,Vo, ...,V are linearly independent.

Proof: Suppose tivi+ thovo+ -+ tve =0
for some scalars ti, t>,...,tx. We have to show
that all those scalars are zeros.

For any index 1 </ < k we have
<t1V1 + vy + - - -+ GV, Vi> = <07VI'> =0
— t]_<V]_,V,’> + t2<V2,V,‘> +o T+ tk(Vk,V,‘> = 0.

By orthogonality, t;j{v;,v;) =0 — t; =0.



Orthonormal bases

Suppose vi,Vo,...,V, is an orthonormal basis for
an inner product space V.
Theorem Let x = x;vy + xovy + - - - + x,v,, and

Yy = yivi + yoVo + - - - + ¥pV,, where x;,y; € C. Then
() (xy) =xy1+xy2+- -+ XY,
(ii)) [l = vPal + el + -+ x>

Proof: (i) follows from (i) when y = x.

(x,y) = <ZX:'V/7 Zijj> =Y % <v,-, ny"’j>
i=1 j=1 i=1 j=1
= Z ZX,‘YJ'<V,', Vj> = ZX;E.
i=1

i=1 j=1



Fourier coefficients

Suppose S = {V,}aca is an orthogonal subset of an inner
product space V such that 0 ¢ S. Forany x€ V, a

(X, Va)
(Va, Va)
Fourier coefficients of the vector x relative to S.

collection of scalars ¢, = , o € A, is called the

Remark. Classical Fourier coefficients were the coefficients of
a function f € C([—m,n],C) relative to the orthogonal set

1, sin x, cos x, sin 2x, cos 2x, ... or the orthonormal set
—2ix ,—ix ix A2ix
e e e 1 e et L.
Theorem If S ={vi,vy,...,v,} is an orthogonal basis for

V, then the Fourier coefficients of any vector x € V' relative
to S coincide with the coordinates of x relative to S. In other

words,
X,V X,V X,V
_ vy ove) L )

(v1,v1) (v2,v2) (Vn, Vi)




Theorem If S = {vy,vy,...,v,} is an orthogonal basis for
V, then the Fourier coefficients of any vector x € V' relative
to S coincide with the coordinates of x relative to S. In other
words,

<X7 V1> <X7 V2> <X,Vn>

<V1, V1> <V2, V2> <Vn7 Vn>

n-

Proof: Let p denote the right-hand side of the above formula.
For any index 1 </ < n,

<pvvi> = ZJ,',:;L <x.7 Vj,> <Vf’vf> = <X7Vi> <V,-,V,-> = <X7Vi>-

(vi, vi)

Hence (x—p,v;) = (x,v;) — (p,v;) =0. Thatis, x—p L v;.
Any vector y € V s represented as y = ryvy + - - - + r,v,, for
some scalars r;. Then

(x=p,y) =R (x=p,v1) + - + T (x—=p,v,) = 0.

Therefore x—p L V. In particular, x—p L x—p, which is
only possible if x—p = 0.



Fourier series: linear algebra meets calculus

Suppose Vi,Vs,...,V,, ... are nonzero vectors in an inner
product space V that form an orthogonal set S. Given

x € V, the Fourier series of the vector x relative to the
orthogonal set S is a series cjvy + Vo + -+ + Cpv, + - - -,
where ci, ¢, ... are the Fourier coefficients of x relative to S.

The set S is called a Hilbert basis for V if any vector x € V
can be expanded into a series x = Zi‘;l apV,, Where «, are
some scalars.

Theorem 1 If S is a Hilbert basis for V, then the above
expansion is unique for any vector x € V. Namely, it
coincides with the Fourier series of x relative to S.

Theorem 2 The sets 1,sin x, cos x, sin 2x, cos 2x, ... and
{e™} ez are two Hilbert bases for the space C([—,n],C).

Remark. Convergence of functions in the inner product space
C([—m, 7], C) need not imply pointwise convergence.



Orthogonal projection

Theorem Let V be an inner product space and V; be a
finite-dimensional subspace of V. Then any vector x € V is
uniquely represented as x = p + 0, where p € V4 and o L V.

X

The component p is called the orthogonal projection of the
vector x onto the subspace Vj.



