Linear Algebra II

MATH 423

Lecture 30:

The Gram-Schmidt process. Orthogonal complement.

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

Definition. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an **orthogonal set** if they are orthogonal to each other: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|\mathbf{v}_i\| = 1$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called an **orthonormal set**.

Theorem Any orthogonal set of nonzero vectors is linearly independent.

Orthogonal basis

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for an inner product space V, then

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$

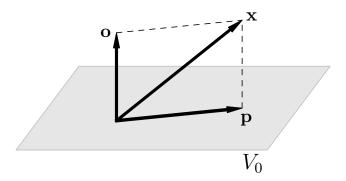
for any vector $\mathbf{x} \in V$.

Corollary If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal basis for an inner product space V, then

$$\mathbf{x}=\langle \mathbf{x},\mathbf{v}_1
angle \mathbf{v}_1+\langle \mathbf{x},\mathbf{v}_2
angle \mathbf{v}_2+\cdots+\langle \mathbf{x},\mathbf{v}_n
angle \mathbf{v}_n$$
 for any vector $\mathbf{x}\in V$.

Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.



The component \mathbf{p} is called the **orthogonal projection** of the vector \mathbf{x} onto the subspace V_0 .

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

Proof of uniqueness: Suppose $\mathbf{x} = \mathbf{p} + \mathbf{o} = \mathbf{p}' + \mathbf{o}'$, where $\mathbf{p}, \mathbf{p}' \in V_0$, $\mathbf{o} \perp V_0$, $\mathbf{o}' \perp V_0$. Then $\mathbf{o} - \mathbf{o}' = \mathbf{p}' - \mathbf{p} \in V_0$. It follows that $\langle \mathbf{o}, \mathbf{o} - \mathbf{o}' \rangle = \langle \mathbf{o}', \mathbf{o} - \mathbf{o}' \rangle = 0$. Hence $\langle \mathbf{o} - \mathbf{o}', \mathbf{o} - \mathbf{o}' \rangle = \langle \mathbf{o}, \mathbf{o} - \mathbf{o}' \rangle - \langle \mathbf{o}', \mathbf{o} - \mathbf{o}' \rangle = 0$ so that $\mathbf{o} - \mathbf{o}' = \mathbf{0}$. Thus $\mathbf{o} = \mathbf{o}'$, then $\mathbf{p} = \mathbf{p}'$.

Proof of existence in the case V_0 admits an orthogonal basis: Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V_0 . Let

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$

and $\mathbf{o} = \mathbf{x} - \mathbf{p}$. By construction, $\mathbf{x} = \mathbf{p} + \mathbf{o}$ and $\mathbf{p} \in V_0$. Just as in the previous lecture, we obtain that $\langle \mathbf{p}, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle$ for $1 \leq i \leq n$. Then $\mathbf{o} \perp \mathbf{v}_i$ for all i, which implies that $\mathbf{o} \perp V_0$.

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

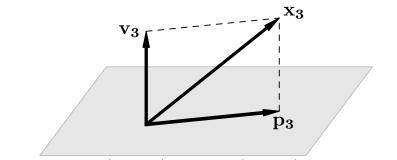
$$\mathbf{v}_1 = \mathbf{x}_1$$
,

$$\mathbf{v}_2 = \mathbf{x}_2 - rac{\langle \mathbf{x}_2, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1$$
,

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2,$$

$$\mathbf{v}_n = \mathbf{x}_n - \frac{\langle \mathbf{x}_n, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \cdots - \frac{\langle \mathbf{x}_n, \mathbf{v}_{n-1} \rangle}{\langle \mathbf{v}_{n-1}, \mathbf{v}_{n-1} \rangle} \mathbf{v}_{n-1}.$$

Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.



$$\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) = \operatorname{Span}(\mathbf{x}_1, \mathbf{x}_2)$$
 $\mathbf{p}_3 = rac{\langle \mathbf{x}_3, \mathbf{v}_1
angle}{\langle \mathbf{v}_1, \mathbf{v}_1
angle} \mathbf{v}_1 + rac{\langle \mathbf{x}_3, \mathbf{v}_2
angle}{\langle \mathbf{v}_2, \mathbf{v}_2
angle} \mathbf{v}_2$

Any basis $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$

Orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_k = \mathbf{x}_k (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), 1 \le k \le n;$
- the span of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \dots, \mathbf{x}_k$;
 - \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_k = \mathbf{x}_k \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

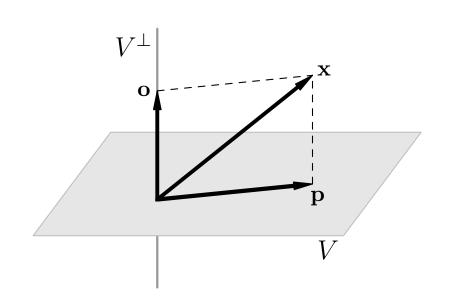
Orthogonal complement

Definition. Let S be a nonempty subset of an inner product space W. The **orthogonal complement** of S, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in W$ that are orthogonal to S.

Theorem Let V be a subspace of W. Then

- (i) V^{\perp} is a closed subspace of W;
- (ii) $V \subset (V^{\perp})^{\perp}$;
- (iii) $V \cap V^{\perp} = \{0\};$
- (iv) dim $V + \dim V^{\perp} = \dim W$ if dim $W < \infty$;
- (v) if dim $V < \infty$, then $V \oplus V^{\perp} = W$, that is, any vector $\mathbf{x} \in W$ is (uniquely) represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

Remark. The orthogonal projection onto a subspace V is well defined if and only if $V \oplus V^{\perp} = W$.



Suppose V is a subspace of an inner product space W such that $V \oplus V^{\perp} = W$. Let \mathbf{p} be the orthogonal projection of a vector $\mathbf{x} \in W$ onto V.

Theorem $\|\mathbf{x} - \mathbf{v}\| > \|\mathbf{x} - \mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.

Proof: Let
$$\mathbf{o} = \mathbf{x} - \mathbf{p}$$
, $\mathbf{o}_1 = \mathbf{x} - \mathbf{v}$, and $\mathbf{v}_1 = \mathbf{p} - \mathbf{v}$. Then $\mathbf{o}_1 = \mathbf{o} + \mathbf{v}_1$, $\mathbf{v}_1 \in V$, and $\mathbf{v}_1 \neq \mathbf{0}$. Since $\mathbf{o} \perp V$, it follows that $\langle \mathbf{o}, \mathbf{v}_1 \rangle = 0$.
$$\|\mathbf{o}_1\|^2 = \langle \mathbf{o}_1, \mathbf{o}_1 \rangle = \langle \mathbf{o} + \mathbf{v}_1, \mathbf{o} + \mathbf{v}_1 \rangle$$

$$= \langle \mathbf{o}, \mathbf{o} \rangle + \langle \mathbf{v}_1, \mathbf{o} \rangle + \langle \mathbf{o}, \mathbf{v}_1 \rangle + \langle \mathbf{v}_1, \mathbf{v}_1 \rangle$$

$$= \langle \mathbf{o}, \mathbf{o} \rangle + \langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \|\mathbf{o}\|^2 + \|\mathbf{v}_1\|^2 > \|\mathbf{o}\|^2.$$

Thus $\|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V} \|\mathbf{x} - \mathbf{v}\|$ is the **distance** from the vector \mathbf{x} to the subspace V.

Problem. Find the distance from the point $\mathbf{v} = (0, 0, 0, 1)$ to the subspace $V \subset \mathbb{R}^4$ span

 $\mathbf{y} = (0,0,0,1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1,-1,1,-1)$, $\mathbf{x}_2 = (1,1,3,-1)$, and $\mathbf{x}_3 = (-3,7,1,3)$.

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal set $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. The desired distance will be $|\mathbf{v}_4|$.

$$\mathbf{x}_{1} = (1, -1, 1, -1), \ \mathbf{x}_{2} = (1, 1, 3, -1),$$

$$\mathbf{x}_{3} = (-3, 7, 1, 3), \ \mathbf{y} = (0, 0, 0, 1).$$

$$\mathbf{v}_{1} = \mathbf{x}_{1} = (1, -1, 1, -1),$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} = (1, 1, 3, -1) - \frac{4}{4}(1, -1, 1, -1)$$

$$= (0, 2, 2, 0),$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

 $=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{9}(0,2,2,0)$

= (0, 0, 0, 0).

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 .

V is a plane, not a 3-dimensional subspace.

We should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\tilde{\mathbf{v}}_{3} = \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{y}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}
= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0)
= (1/4, -1/4, 1/4, 3/4).$$

$$|\tilde{\textbf{v}}_3| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}.$$