MATH 423 Linear Algebra II Lecture 31: Dual space. Adjoint operator.

Dual space

Let V be a vector space over a field \mathbb{F} .

Definition. The vector space $\mathcal{L}(V, \mathbb{F})$ of all linear functionals $\ell: V \to \mathbb{F}$ is called the **dual space** of V (denoted V' or V^*).

Theorem Let $\beta = {\mathbf{v}_{\alpha}}_{\alpha \in \mathcal{A}}$ be a basis for V. Then (i) any linear functional $\ell : V \to \mathbb{F}$ is uniquely determined by its restriction to β ; (ii) any function $f : \beta \to \mathbb{F}$ can be (uniquely) extended to a linear functional on V.

Thus we have a one-to-one correspondence between elements of the dual space V' and collections of scalars c_{α} , $\alpha \in \mathcal{A}$. Namely, $\ell \mapsto \{\ell(\mathbf{v}_{\alpha})\}_{\alpha \in \mathcal{A}}$.

Dual basis

Let $\beta = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ be a basis for a vector space V. For any $1 \le i \le n$ let f_i denote a unique linear functional on V such that $f_i(\mathbf{v}_j) = 1$ if i = jand 0 otherwise.

If $\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \cdots + r_n \mathbf{v}_n$, then $f_i(\mathbf{v}) = r_i$. That is, the functional f_i evaluates the *i*th coordinate of the vector \mathbf{v} relative to the basis β .

Theorem The functionals f_1, f_2, \ldots, f_n form a basis for the dual space V' (called the **dual basis** of β).

Double dual space

The **double dual** of a vector space V is V'', the dual of V'.

Since V' is a functional vector space, to any vector $v \in V$ we associate an evaluation mapping, denoted $\hat{\mathbf{v}}$, given by $\hat{\mathbf{v}}(f) = f(\mathbf{v}), \ \mathbf{v} \in V$. This mapping is linear, hence it is an element of V".

Theorem Consider a mapping $\chi: V \to V''$ given by $\chi(\mathbf{v}) = \hat{\mathbf{v}}$. Then (i) χ is linear; (ii) χ is one-to-one; (iii) χ is onto if and only if dim $V < \infty$.

Corollary 1 If V is finite-dimensional, then χ is an isomorphism of V onto V".

Corollary 2 If V is finite-dimensional, then any basis for V' is the dual basis of some basis for V.

Dual linear transformation

Suppose V and W are vector spaces and $L: V \to W$ is a linear transformation. The **dual transformation** of L is a transformation $L': W' \to V'$ given by $L'(f) = f \circ L$. That is, L' precomposes each linear functional on W with L. It is easy to see that L'(f) is indeed a linear functional on V. Also, L' is linear.

Suppose V and W are finite-dimensional. Let β be a basis for V and γ be a basis for W. Let β' be the dual basis of β and γ' be the dual basis for γ .

Theorem If $[L]_{\beta}^{\gamma} = A$ then $[L']_{\gamma'}^{\beta'} = A^t$.

Dual of an inner product space

Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$. For any $\mathbf{y} \in V$ consider a function $\ell_{\mathbf{y}} : V \to \mathbb{F}$ given by $\ell_{\mathbf{y}}(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle$ for all $\mathbf{x} \in V$. This function is linear.

Theorem Let $\theta: V \to V'$ be given by $\theta(\mathbf{v}) = \ell_{\mathbf{v}}$. Then (i) θ is linear if $\mathbb{F} = \mathbb{R}$ and half-linear if $\mathbb{F} = \mathbb{C}$; (ii) θ is one-to-one.

Corollary If V is finite-dimensional, then any linear functional on V is uniquely represented as $\ell_{\mathbf{v}}$ for some $\mathbf{v} \in V$.

Adjoint operator

Let *L* be a linear operator on an inner product space *V*. *Definition.* The **adjoint** of *L* is a transformation $L^* : V \to V$ satisfying $\langle L(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, L^*(\mathbf{y}) \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$. Notice that the adjoint of *L* may not exist.

Theorem 1 If the adjoint L^* exists, then it is unique and linear.

Theorem 2 If V is finite-dimensional, then the adjoint operator L^* always exists.

Properties of adjoint operators:

•
$$(L_1 + L_2)^* = L_1^* + L_2^*$$

•
$$(rL)^* = \overline{r} L^*$$

- $(L_1 \circ L_2)^* = L_2^* \circ L_1^*$
- $(L^*)^* = L$
- $\operatorname{id}_V^* = \operatorname{id}_V$