MATH 423
 Linear Algebra II

Lecture 31:
Dual space.
Adjoint operator.

Dual space

Let V be a vector space over a field \mathbb{F}.
Definition. The vector space $\mathcal{L}(V, \mathbb{F})$ of all linear functionals $\ell: V \rightarrow \mathbb{F}$ is called the dual space of V (denoted V^{\prime} or V^{*}).

Theorem Let $\beta=\left\{\mathbf{v}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be a basis for V. Then
(i) any linear functional $\ell: V \rightarrow \mathbb{F}$ is uniquely determined by its restriction to β;
(ii) any function $f: \beta \rightarrow \mathbb{F}$ can be (uniquely) extended to a linear functional on V.

Thus we have a one-to-one correspondence between elements of the dual space V^{\prime} and collections of scalars $c_{\alpha}, \alpha \in \mathcal{A}$. Namely, $\ell \mapsto\left\{\ell\left(\mathbf{v}_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$.

Dual basis

Let $\beta=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ be a basis for a vector space V. For any $1 \leq i \leq n$ let f_{i} denote a unique linear functional on V such that $f_{i}\left(\mathbf{v}_{j}\right)=1$ if $i=j$ and 0 otherwise.

If $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, then $f_{i}(\mathbf{v})=r_{i}$. That is, the functional f_{i} evaluates the i th coordinate of the vector \mathbf{v} relative to the basis β.

Theorem The functionals $f_{1}, f_{2}, \ldots, f_{n}$ form a basis for the dual space V^{\prime} (called the dual basis of β).

Double dual space

The double dual of a vector space V is $V^{\prime \prime}$, the dual of V^{\prime}. Since V^{\prime} is a functional vector space, to any vector $v \in V$ we associate an evaluation mapping, denoted $\hat{\mathbf{v}}$, given by $\hat{\mathbf{v}}(f)=f(\mathbf{v}), \mathbf{v} \in V$. This mapping is linear, hence it is an element of $V^{\prime \prime}$.

Theorem Consider a mapping $\chi: V \rightarrow V^{\prime \prime}$ given by $\chi(\mathbf{v})=\hat{\mathbf{v}}$. Then
(i) χ is linear;
(ii) χ is one-to-one;
(iii) χ is onto if and only if $\operatorname{dim} V<\infty$.

Corollary 1 If V is finite-dimensional, then χ is an isomorphism of V onto $V^{\prime \prime}$.
Corollary 2 If V is finite-dimensional, then any basis for V^{\prime} is the dual basis of some basis for V.

Dual linear transformation

Suppose V and W are vector spaces and $L: V \rightarrow W$ is a linear transformation. The dual transformation of L is a transformation
$L^{\prime}: W^{\prime} \rightarrow V^{\prime}$ given by $L^{\prime}(f)=f \circ L$. That is, L^{\prime} precomposes each linear functional on W with L. It is easy to see that $L^{\prime}(f)$ is indeed a linear functional on V. Also, L^{\prime} is linear.

Suppose V and W are finite-dimensional. Let β be a basis for V and γ be a basis for W. Let β^{\prime} be the dual basis of β and γ^{\prime} be the dual basis for γ.
Theorem If $[L]_{\beta}^{\gamma}=A$ then $\left[L^{\prime}\right]_{\gamma^{\prime}}^{\beta^{\prime}}=A^{t}$.

Dual of an inner product space

Let V be a vector space with an inner product $\langle\cdot, \cdot\rangle$. For any $\mathbf{y} \in V$ consider a function $\ell_{\mathbf{y}}: V \rightarrow \mathbb{F}$ given by $\ell_{\mathbf{y}}(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x} \in V$. This function is linear.

Theorem Let $\theta: V \rightarrow V^{\prime}$ be given by $\theta(\mathbf{v})=\ell_{\mathbf{v}}$. Then (i) θ is linear if $\mathbb{F}=\mathbb{R}$ and half-linear if $\mathbb{F}=\mathbb{C}$; (ii) θ is one-to-one.

Corollary If V is finite-dimensional, then any linear functional on V is uniquely represented as ℓ_{v} for some $\mathbf{v} \in V$.

Adjoint operator

Let L be a linear operator on an inner product space V.
Definition. The adjoint of L is a transformation $L^{*}: V \rightarrow V$ satisfying $\langle L(\mathbf{x}), \mathbf{y}\rangle=\left\langle\mathbf{x}, L^{*}(\mathbf{y})\right\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
Notice that the adjoint of L may not exist.
Theorem 1 If the adjoint L^{*} exists, then it is unique and linear.

Theorem 2 If V is finite-dimensional, then the adjoint operator L^{*} always exists.

Properties of adjoint operators:

- $\left(L_{1}+L_{2}\right)^{*}=L_{1}^{*}+L_{2}^{*}$
- $(r L)^{*}=\bar{r} L^{*}$
- $\left(L_{1} \circ L_{2}\right)^{*}=L_{2}^{*} \circ L_{1}^{*}$
- $\left(L^{*}\right)^{*}=L$
- $\mathrm{id}_{V}^{*}=\mathrm{id}_{V}$

